Effect of the Y2O3 Addition Content on the Structural Properties of ZrO2 Thin Films and Coating Material

Article Preview

Abstract:

The influence of addition of Y2O3 on the structure of ZrO2 thin films and bulk material was studied employing X-ray diffraction (XRD) analysis. The films were prepared by the electron-beam evaporation method. XRD analysis permits the study of the stabilization process. For pure ZrO2 thin film and coating material, the crystallographic structure is monoclinic phase; with increasing Y2O3 mole percent, the structure of Y2O3 stabilized ZrO2 (YSZ) material changes from a mixture of monoclinic and cubic phase to a single cubic phase. Furthermore, calculated results of grain size show that YSZ thin film and coating material have the same crystallization trend.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 443-444)

Pages:

655-659

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Gu, X. Liu, J. Tang, Appl. Opt. 32 (1993) 1528.

Google Scholar

[2] M. Boulouz, A. Boulouz, A. Giani, A. Boyer, Thin Solid Films323 (1998) 85.

Google Scholar

[3] S.B. Amor, B. Rogier, G. Band, Mater. Sci. Eng. B57 (1998)28.

Google Scholar

[4] P. Mengucci et al. / Thin Solid Films 478 (2005) 125–131.

Google Scholar

[5] J.P. Che´ron, F. Tcheliebou, A. Boyer, J. Vac. Sci. Technol. A 10(5) (1992) 3207.

Google Scholar

[6] W.T. Pawlewicz, D.D. Hays, Thin Solid Films 94 (1982) 31.

Google Scholar

[7] F. Tcheliebou, M. Boulouz, A. Boyer, J. Mater. Sci. Eng. B38 (1996) 90.

Google Scholar

[8] M. Boulouz et al. : Materials Science and Engineering B 67 (1999) 122.

Google Scholar

[9] E.E. Khawaja, F. Bouamrane, A.B. Hallak, M.A. Daous. Sci. Technol. A11 (3) (1993) 580.

Google Scholar

[10] M.G. Krishna, K.N. Rao, S. Mohan, Appl. Phys. Lett. 57 (6)(1990) 557.

Google Scholar

[11] Peifu Gu, Xu Liu, Jinfa Tang, Appl. Opt. 32 (9) (1993) 1528.

Google Scholar

[12] H. Tomaszewski, J. Haemars, J. Denul, N.D. Roo, R.D. Gryse, Thin Solid Films 293 (1997) 67.

DOI: 10.1016/s0040-6090(96)09089-x

Google Scholar

[13] Y. Iijima, K. Kakimoto, T. Saitoh, T. Kato, T. Hirayama, Physica. C 378-381 (2002) 960.

Google Scholar

[14] S.J. Wang, C.K. Ong, Appl. Phys. Lett. 80 (2002) 2541.

Google Scholar

[15] K.W. Chour, J. Chen, R. Xu, Thin Solid Films 304 (1997) 106.

Google Scholar

[16] C. Sakurai, T. Fukui, M. Okuyama, J. Am. Ceram. Soc. 76 (1993) 1061.

Google Scholar

[17] Sung-Yong Chun and Nobuyasu Mizutani. Applied Surface Science, 171(2002) 82.

Google Scholar

[18] H. B. Wang, C. R. Xia, G. Y. Meng and D. K. Peng. Materials Letters, 44(2000) 23.

Google Scholar

[19] A. P. Caricato, A. Di Cristoforo, M. Fernández et al. Applied Surface Science, 15 (2003), 615.

Google Scholar

[20] B.D. Cullity, Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978, p.102.

Google Scholar

[21] M. Boulouz et al. Materials Science and Engineering B 67 (1999) 122.

Google Scholar