Optimizing the Sintering Parameter of Metal Injection Molding Compact Using Robust Engineering Technique

Article Preview

Abstract:

Sintering is a key step in the metal injection molding (MIM) process, which affects the mechanical properties of the sintered part. The mechanical properties of the sintered compacts are resulted from tremendous sintered part densification. This work utilizes robust engineering technique in optimizing sintering parameters of metal injection molding compacts. Three quality characteristics; shrinkage, density and flexure strength is optimized using Taguchi method-based grey analysis. The modified algorithm adopted here was successfully used for both detraining the optimum setting of the process parameters and for combining multiple quality characteristics into one integrated numerical value called grey relational grade. The sintering parameters investigated are: sintering temperature, sintering time, and heating rate. The result concluded that sintering time is the most significant for the combination of the quality characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-361

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Suri, S.V. Atre, R.M. German and J.P. Souza: Materials Science and Engineering Vol. A356 (2003), pp.337-344.

Google Scholar

[2] B. Huang, S. Liang and X. Qu: Journal of Materials Processing Technology Vol. 137 (2003), pp.132-137.

Google Scholar

[3] S. Li, B. Huang, D. Li, Y. Li, S. Liang and H. Zhou: Powder Metallurgy Vol 46 No 3 (2003), pp.241-245.

Google Scholar

[4] G. Fu, N.H. Loh, S.B. Tor, B.Y. Tay, Y. Murakoshi and R. Maeda: Applied Physics A: Materials Science and Processing Vol 81 (2005), pp.495-500.

Google Scholar

[5] R.P. Koseski, P. Suri, N.B. Earhardt, R.M. German, and Y.S. Kwon: Materials Science and Engineering Vol A390 (2005), pp.171-177.

Google Scholar

[6] P. Suri, R.P. Koseski and R.M. German: Materials Science and Engineering Vol A402 (2005), pp.341-348.

Google Scholar

[7] B. Berginc, Z. Kampuš, and B. Šuštaršič: Journal of Achievements in Materials and Manufacturing Engineering Vol 15 No 1-2 (2006), pp.63-70.

Google Scholar

[8] L.K. Pan, C.C. Wang, S.L. Wei and H.F. Sher: Journal of Materials Processing Technology Vol 182 (2007), p.107–116.

Google Scholar

[9] Z.A. Khan, S. Kamaruddin and A.N. Siddiquee: Materials and Design Vol 31 (2010), p.2925–2931.

Google Scholar

[10] Y. -M. Chiang and H. -H. Hsieh: Computers & Industrial Engineering Vol 56 (2009), p.648–661.

Google Scholar

[11] K.R. Jamaludin, N. Muhamad, M.N.A. Rahman, S.Y.M. Amin and Murtadhahadi: The Journal of The Institution of Engineers, Malaysia Vol 69 No 2 (2008), pp.40-46.

Google Scholar

[12] K.R. Jamaludin, N. Muhamad, S.Y.M. Amin, M.N.A. Rahman, M.H. Ismail and Murtadhahadi: Advances in Powder Metallurgy and Particulate Materials Vol 1 (2008), pp.186-194.

Google Scholar

[13] K.R. Jamaludin, N. Muhamad, M.N.A. Rahman, S.Y.M. Amin, S. Ahmad and M.H.I. Ibrahim: Proceeding of the 3rd International Symposium, South East Asian Technical University Consortium (SEATUC), (2009).

Google Scholar

[14] K.R. Jamaludin, N. Muhamad, M.N.A. Rahman, S. Ahmad, M.H.I. Ibrahim, N.H.M. Nor and M.Y.M. Daud: Key Engineering Materials Vol 443 (2010), pp.63-68.

DOI: 10.4028/www.scientific.net/kem.443.63

Google Scholar

[15] S.H. Park: Robust design and analysis for quality engineering (Chapman & Hall, New Jersey 1996).

Google Scholar

[16] C.C. Tsao: International Journal of Advanced Manufacturing Technology Vol 40 (2009), pp.41-48.

Google Scholar

[17] J. Kopac and P. Krajnik: Journal of Materials Processing Technology Vol 191 (2007), p.400–403.

Google Scholar

[18] J.L. Deng: Journal of Grey System Vol 1 No 1 (1989), p.1–24.

Google Scholar