Influence of Material Properties in Explosive Cladding of Dissimilar Metals

Article Preview

Abstract:

Explosive cladding produces a strong weld between two dissimilar metals using explosive energy. The influence of material properties in achieving strong AluminiumSteel, CopperSteel explosive clad is discussed in this study. The solidification microstructure is determined by the nature of the competitive growth between adjacent columnar grains and, therefore, has a significant influence in the final characteristics of fusion zone. A compatible interlayer can significantly reduce the solidification time resulting in an intermetallics free interface. The influence of interlayer in the lower limit of weldability window is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

735-740

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Saravanan, K. Raghukandan, weldability windows for dissimilar metals cladding using explosives, Theory and practice of Energetic Materials, Vol VIII, (2009) pp.585-589.

DOI: 10.4028/www.scientific.net/amr.445.729

Google Scholar

[2] B. Crossland, Explosive welding of metals and its applications, Oxford university press (1982).

Google Scholar

[3] Nizamettin Kahraman, Behcet Gulenc Fehim Findik, Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti–6Al–4V and Al plates International Journal of Impact Engineering 34 (2007) 1423–1432.

DOI: 10.1016/j.ijimpeng.2006.08.003

Google Scholar

[4] K. Hokomoto,A. Chiba and M. Fujita T. Izuma composites engineering Vol 5 No. 5 pp.1069-1079, (1995).

Google Scholar

[5] K. Hokamoto, T. Izuma and M. Fujita, Metallurgical TransactionsA1993 pp.2289-2296.

Google Scholar

[6] Bogumił Wronka, Testing of explosive welding and welded joints. The microstructure of explosive welded joint sand their mechanical properties J Mater Science (2010).

DOI: 10.1007/s10853-010-4374-y

Google Scholar

[7] Vi. Kuz'min, Vi. Liysak , An. Kriventsov and Mayakovlev, Critical conditions of the formation and failure of welded joints in explosive welding Welding International 2004 18 (3) 223–227.

DOI: 10.1533/wint.2004.3270

Google Scholar

[8] Jun Hyun Han, Jae Pyoung Ahn, Myung Chul Shin journal of materials science 38 (2003) 13– 18.

Google Scholar

[9] J. G Banker National Association of Corrosion Engineers, NACE Paper 03459(2003).

Google Scholar

[10] P. Manikandan, K. Hokamoto, M. Fujita, K. Raghukandan, R. Tomoshige, Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel journal of materials processing technology 195 (2008).

DOI: 10.1016/j.jmatprotec.2007.05.002

Google Scholar

[11] S. Saravanan, K. Raghukandan Energy Dissipation in Explosive Welding of Dissimilar Metals Material Science Forum Vol. 673 (2011) pp.125-129.

DOI: 10.4028/www.scientific.net/msf.673.125

Google Scholar

[12] P.V. Vaidyanathan and Ar. Ramanathan, Computer aided design of explosive welding systems J. Mech work Tech. (1991).

Google Scholar

[13] K. Raghukandan Analysis of the explosive cladding of cu–low carbon steel plates, Journal of Materials Processing Technology 139 (2003) 573–577.

DOI: 10.1016/s0924-0136(03)00539-9

Google Scholar