Effect of Deep Cryogenic Treatment on the Microstructure of an Aerospace Aluminum Alloy

Article Preview

Abstract:

This paper describes how deep cryogenic treatment at 98K produces changes in the microstructure of a heat-treated aluminum alloy. It was observed how the sub-micrometric particles increased near and at the grain boundaries. This slight precipitation did not produce any modification in static mechanical properties. However, the compressive residual stresses of the material were higher after compared to before the treatment. Both these effects can enhance the life of this alloy through cryogenic treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

965-970

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Baldissera, C. Delprete: Open Mech. Eng. J. Vol. 2 (2008), p.1.

Google Scholar

[2] R. Schiradelly, F.J. Diekman,: Heat Treat. Prog. (2001), p.43.

Google Scholar

[3] S. Kalia,: J. Low Temp. Phys. Vol. 158 (2010), p.934.

Google Scholar

[4] D. Das, A.K. Dutta, K.K. Ray: Mater. Sci. Eng. A, Vol. 527 (2010), p.2182.

Google Scholar

[5] F. da Silva, S. Franco, Á. Machado, E. Ezugwu, A. M. Souza: Wear, Vol. 261 (2006), p.674.

Google Scholar

[6] D. Yum, L. Xiaoping, X. Hongshen,: Heat Treat. Met. Vol. 25 (1998), pp.55-59.

Google Scholar

[7] K. Amini, S. Nategh, A. Shafyei,: Mater Des. Vol. 31 (2010), p.4666.

Google Scholar

[8] H. Yang, W. Jun, S. Bao-Luo, L. Hao-Huai, G. Sheng-Ji: Wear Vol. 261 (2006), p.1150.

Google Scholar

[9] C.J. Isaak, W. Reitz: Mater. Manuf. Processes Vol. 23 (2008), p.82.

Google Scholar

[10] Practical welding today Vol. 4 (2000), p.32.

Google Scholar

[11] X.Q. Jiangm, N. Li, H. He, X.J. Zhang: Mater. Sci. Forum Vol. 546 (2007), p.845.

Google Scholar

[12] P. Chen, T. Malone, R. Bond, P. Torres: 5th Conference on Aerospace Materials and Environmental Technology. (2002).

Google Scholar

[13] K.E. Lulay, K. Khan, D. Chaaya: J. Mater. Eng. Perform Vol. 11 (2002) p.479.

Google Scholar

[14] Q.C. Wang, L.T. Wang, W. Peng: Mater. Sci. Forum Vol. 490-491 (2005), p.97.

Google Scholar

[15] E.H. Hollingsworth, H.Y. Hunsicker: Corrosion of Aluminum and Aluminum Alloys, in ASM Handbook, Corrosion, Vol . 13, 9 th ed., ASM International, USA, 1987, p.583.

Google Scholar

[16] I.J. Polmar: Light Alloys, Elsevier, London (2006).

Google Scholar

[17] D. Landolt: Traité des Materiaux. Corrosion et Chimie de Surfaces des Metaux. Presses Politechniques et Universitaires Romandes, Laussaine (1997).

DOI: 10.1002/maco.19940450217

Google Scholar

[18] J.M. Badía, J.M. Antoranz, P. Tarín, C. López del Castillo, A.G. Simón, N.M. Piris: Bol. Soc. Esp. Ceram. V. 43 (2) (2004) 224-229.

Google Scholar

[19] L.A. Alava: Proceedings of the 10th Cryogenic Conference. IIR International. Prague, (2008), p.21.

Google Scholar

[20] L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg: Acta Mater. Vol. 49 (2001) p.3443.

DOI: 10.1016/s1359-6454(01)00251-8

Google Scholar

[21] G. Sha, A. Cerezo: Acta Mater. Vol. 52 (2004), p.4503.

Google Scholar

[22] Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Acta Mater. Vol. 52 (2004), p.4589.

Google Scholar

[23] X.Z. Li, V. Hansen, J. GjØnnes, L.R. Wallenberg: Acta Mater. Vol. 47 (1999), p.2651.

Google Scholar