Smoke Propagation in an Inclined Semi-Circular Long Tunnel

Article Preview

Abstract:

This work used FDS to simulate tunnel fires occur in a semi-circular longitudinally ventilated tunnel. By varying the parameters such as the tunnel gradient, the fire size, and the ventilation velocity, their influence on the backlayering effect and downstream propagation rate can be recognized. Under weak ventilation, the backlayering effect either advances or vanishes depending on the slope of the tunnel. Under stronger ventilation, the backlayering effect would break up. The temperature distributions may become less and less dependent on the tunnel gradient when the ventilation velocity is increased. Although the hot gases and smoke in uphill tunnels propagate faster than those in downhill tunnels, their difference reduces with ventilation velocity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 446-449)

Pages:

2143-2148

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Friedman, An International Survey of Computer Models for Fire and Smoke, J. Fire Prot. Eng. 4 (1992) 81-92.

Google Scholar

[2] S.M. Olenick, D.J. Carpenter, An Updated International Survey of Computer Models for Fire and Smoke, J. Fire Prot. Eng. 13 (2003) 87-110.

DOI: 10.1177/1042391503013002001

Google Scholar

[3] C.C. Hwang, R.F. Chaiken, J.M. Singer, D.N.H. Chi, Reverse Stratified Flow in Duct Fires: A Two-Dimensional Approach, 16th Symposium on Combustion (1977) 1385-1395.

DOI: 10.1016/s0082-0784(77)80423-2

Google Scholar

[4] N.C. Markatos, M.R. Malin, G. Cox, Mathematical Modelling of Buoyancy-Induced Smoke Flow in Enclosures, Int. J. Heat Mass Transf. 25 (1982) 63-75.

DOI: 10.1016/0017-9310(82)90235-6

Google Scholar

[5] S. Kumar, G. Cox, Radiant Heat and Surface Roughness Effects in the Numerical Modeling of Tunnel Fires, 6th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels, BMRA, 1998.

Google Scholar

[6] S. Kotoh, G. Yamanaka, Air Flow Analyses in a Longitudinally Ventilated Road Tunnel on a Fire, ASME/JSME Thermal Engineering Proceedings 5 (1991) 347-354.

Google Scholar

[7] H. Xue, E. Hihara, T. Saito, Turbulence Model of Fire-Induced Air Flow in a Ventilated Tunnel, Int. J. Heat Mass Transf. 36 (1993) 1739-1748.

DOI: 10.1016/s0017-9310(05)80160-7

Google Scholar

[8] H. Xue, T.C. Chew, H.F. Cheong, Transient Three-Dimensional Fire-Induced Airflow in a Full Scale Ventilated Tunnel, Combust. Sci. Technol. 105 (1995) 117-129.

DOI: 10.1080/00102209508907742

Google Scholar

[9] Y. Wu, M.Z.A. Bakar, Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems - a Study of the Critical Velocity, Fire Saf. J. 35 (2000) 363-390.

DOI: 10.1016/s0379-7112(00)00031-x

Google Scholar

[10] P.J. Woodburn, R.E. Britter, CFD Simulations of a Tunnel Fire – Part II, Fire Saf. J. 26 (1996) 63-90.

DOI: 10.1016/0379-7112(96)00019-7

Google Scholar

[11] S.R. Lee, H.S. Ryou, A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio, Build. Environ. 41 (2006) 719-725.

DOI: 10.1016/j.buildenv.2005.03.010

Google Scholar

[12] L.H. Hu, R. Huo, H.B. Wang, R.X. Yang, Experimental and numerical studies on longitudinal smoke temperature distribution upstream and downstream from the fire in a road tunnel, J. Fire Sci. 25 (2007) 23-43.

DOI: 10.1177/0734904107062357

Google Scholar

[13] R.G. Rehm, H.R. Baum, The Equations of Motion of Thermally Driven Buoyant Flows, J. Res. Natl. Inst. Stand. Technol. 83 (1978) 297-308.

DOI: 10.6028/jres.083.019

Google Scholar

[14] K.B.McGrattan, H.R. Baum, R.G. Rehm, Large Eddy Simulation of Smoke Movement, Fire Saf. J. 30 (1998) 161-178.

DOI: 10.1016/s0379-7112(97)00041-6

Google Scholar

[15] J. Smagorinsky, General Circulation Experiments with the Primitive Equations. I. The basic experiment, Mon. Weather Rev. 91 (1963) 99-164.

DOI: 10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2

Google Scholar

[16] J.E. Floyd, K.B. McGrattan, S. Hostikka, H.R. Baum, CFD Fire Simulation Using Mixture Fraction Combustion and Finite Volume Radiative Heat Transfer, J. Fire Prot. Eng. 13 (2003) 11-36.

DOI: 10.1177/1042391503013001002

Google Scholar