[1]
R. Friedman, An International Survey of Computer Models for Fire and Smoke, J. Fire Prot. Eng. 4 (1992) 81-92.
Google Scholar
[2]
S.M. Olenick, D.J. Carpenter, An Updated International Survey of Computer Models for Fire and Smoke, J. Fire Prot. Eng. 13 (2003) 87-110.
DOI: 10.1177/1042391503013002001
Google Scholar
[3]
C.C. Hwang, R.F. Chaiken, J.M. Singer, D.N.H. Chi, Reverse Stratified Flow in Duct Fires: A Two-Dimensional Approach, 16th Symposium on Combustion (1977) 1385-1395.
DOI: 10.1016/s0082-0784(77)80423-2
Google Scholar
[4]
N.C. Markatos, M.R. Malin, G. Cox, Mathematical Modelling of Buoyancy-Induced Smoke Flow in Enclosures, Int. J. Heat Mass Transf. 25 (1982) 63-75.
DOI: 10.1016/0017-9310(82)90235-6
Google Scholar
[5]
S. Kumar, G. Cox, Radiant Heat and Surface Roughness Effects in the Numerical Modeling of Tunnel Fires, 6th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels, BMRA, 1998.
Google Scholar
[6]
S. Kotoh, G. Yamanaka, Air Flow Analyses in a Longitudinally Ventilated Road Tunnel on a Fire, ASME/JSME Thermal Engineering Proceedings 5 (1991) 347-354.
Google Scholar
[7]
H. Xue, E. Hihara, T. Saito, Turbulence Model of Fire-Induced Air Flow in a Ventilated Tunnel, Int. J. Heat Mass Transf. 36 (1993) 1739-1748.
DOI: 10.1016/s0017-9310(05)80160-7
Google Scholar
[8]
H. Xue, T.C. Chew, H.F. Cheong, Transient Three-Dimensional Fire-Induced Airflow in a Full Scale Ventilated Tunnel, Combust. Sci. Technol. 105 (1995) 117-129.
DOI: 10.1080/00102209508907742
Google Scholar
[9]
Y. Wu, M.Z.A. Bakar, Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems - a Study of the Critical Velocity, Fire Saf. J. 35 (2000) 363-390.
DOI: 10.1016/s0379-7112(00)00031-x
Google Scholar
[10]
P.J. Woodburn, R.E. Britter, CFD Simulations of a Tunnel Fire – Part II, Fire Saf. J. 26 (1996) 63-90.
DOI: 10.1016/0379-7112(96)00019-7
Google Scholar
[11]
S.R. Lee, H.S. Ryou, A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio, Build. Environ. 41 (2006) 719-725.
DOI: 10.1016/j.buildenv.2005.03.010
Google Scholar
[12]
L.H. Hu, R. Huo, H.B. Wang, R.X. Yang, Experimental and numerical studies on longitudinal smoke temperature distribution upstream and downstream from the fire in a road tunnel, J. Fire Sci. 25 (2007) 23-43.
DOI: 10.1177/0734904107062357
Google Scholar
[13]
R.G. Rehm, H.R. Baum, The Equations of Motion of Thermally Driven Buoyant Flows, J. Res. Natl. Inst. Stand. Technol. 83 (1978) 297-308.
DOI: 10.6028/jres.083.019
Google Scholar
[14]
K.B.McGrattan, H.R. Baum, R.G. Rehm, Large Eddy Simulation of Smoke Movement, Fire Saf. J. 30 (1998) 161-178.
DOI: 10.1016/s0379-7112(97)00041-6
Google Scholar
[15]
J. Smagorinsky, General Circulation Experiments with the Primitive Equations. I. The basic experiment, Mon. Weather Rev. 91 (1963) 99-164.
DOI: 10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
Google Scholar
[16]
J.E. Floyd, K.B. McGrattan, S. Hostikka, H.R. Baum, CFD Fire Simulation Using Mixture Fraction Combustion and Finite Volume Radiative Heat Transfer, J. Fire Prot. Eng. 13 (2003) 11-36.
DOI: 10.1177/1042391503013001002
Google Scholar