Enzymatic Saccharification of Cellulose Pretreated from Lignocellulosic Biomass: Status and Prospect

Article Preview

Abstract:

Lignocellulose biomass is the most extensive, cheapest raw material in the world, the saccharification of cellulose pretreated from lignocellulosic biomass for production of fuel ethanol has become the world-wide research focus currently. This paper reviews the status of enzymatic saccharification of pretreated cellulose, including the improvement of structure and composition of the substrate by pretreatment, the operation of high substrate concentration, the efficient mixing of multi-enzyme system, the addition of non-catalyst, the recycling of enzyme, the elimination of product inhibition, and finally summed up the present challenges and the future prospects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 446-449)

Pages:

2809-2814

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al., Features of promising technologies for pretreatment of lignocellulose biomass, Bioresour. Technol. 6 (2005) 673-686.

Google Scholar

[2] ALVIRA P, TOMAS P E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol. 13 (2010) 4851 -4861.

DOI: 10.1016/j.biortech.2009.11.093

Google Scholar

[3] Gupta, R., Sharma, K. K., &Kuhad,R. C., Separate hydrolysis and fermentation (SHF) of P. juliflora, a woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 3498, Bioresour. Technol. 3 (2009) 1214-1220.

DOI: 10.1016/j.biortech.2008.08.033

Google Scholar

[4] Rishi Gupta, Yogender Pal Khasa, Ramesh Chander Kuhad, Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials, Carbohydr. Polym. 3 (2011) 1103-1109.

DOI: 10.1016/j.carbpol.2010.12.074

Google Scholar

[5] Kuhar, S., Nair, L. M., & Kuhad, R. C., Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol, Can. J. Microbiol. 54 (2008) 305-313.

DOI: 10.1139/w08-003

Google Scholar

[6] ZABIHI S, ALINIA R, ESMAEILZADEH F, et al., Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production, Biosyst. Eng. 3 (2010) 288-297.

DOI: 10.1016/j.biosystemseng.2009.11.007

Google Scholar

[7] KIM T H, LEE Y Y, Pretreatment and fractionation of corn stover by ammonia recycle percolation process, Bioresour. Technol. 96 (2005) 2007-2013.

DOI: 10.1016/j.biortech.2005.01.015

Google Scholar

[8] Yang, B., &Wyman, C. E., Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose, Biotechnol. Bioeng. 86 (2004) 88-95.

DOI: 10.1002/bit.20043

Google Scholar

[9] TAHERZADEH M J, KARIMI K, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621-1651.

DOI: 10.3390/ijms9091621

Google Scholar

[10] Varga, E., Klinke, H.B., Reczey, K., Thomsen, A.B., High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol, Biotechnol. Bioeng. 88 (2004) 567-574.

DOI: 10.1002/bit.20222

Google Scholar

[11] Jorgensen, H., Vibe-Pedersen, J., Larsen, J., Felby, C., Liquefaction of lignocellulose at high-solids concentrations, Biotechnol. Bioeng. 96 (2007) 862-870.

DOI: 10.1002/bit.21115

Google Scholar

[12] Zhang J, Chu DQ, Huang J, Yu ZC, Dai GC, Bao J, Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor, Biotechnol. Bioeng. 105 (2010) 718-728.

DOI: 10.1002/bit.22593

Google Scholar

[13] Zhang MJ, Wang F, Su RX, Qi W, He ZM, Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment, Bioresour. Technol. 101 (2010) 4959-4964.

DOI: 10.1016/j.biortech.2009.11.010

Google Scholar

[14] Zhang MJ, Su RX, Li Q, Qi W, He ZM, Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor, BioEnerg. Res. 4 (2011) 134-140.

DOI: 10.1007/s12155-010-9107-1

Google Scholar

[15] Andric P, Meyer AS, Jensen PA, Dam-Johansen K, Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II: Quantification of inhibition and suitability of membrane reactors, Biotechnol. Adv. 28 (2010) 407-425.

DOI: 10.1016/j.biotechadv.2010.02.005

Google Scholar

[16] Rosgaard, L. et al., Efficiency of new fungal cellulase systems in boosting enzymatic degradation of Barley Straw Lignocellulose, Biotechnol. Prog. 22 (2006) 493-498.

DOI: 10.1021/bp050361o

Google Scholar

[17] Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A., Cellulase productionsing biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production, Renew. Energy. 34 (2009) 421-424.

DOI: 10.1016/j.renene.2008.05.008

Google Scholar

[18] Zhang MJ, Su RX, QiW, He ZM, Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes, Appl. Biochem. Biotechnol. 160 (2010) 1407-1414.

DOI: 10.1007/s12010-009-8602-3

Google Scholar

[19] Kumar R, Wyman CE, Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies, Biotechnol. Bioeng. 102 (2009) 457-467.

DOI: 10.1002/bit.22068

Google Scholar

[20] M.G. Tabka, Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment, Enzyme Microb. Technol. 39 (2006) 897-902.

DOI: 10.1016/j.enzmictec.2006.01.021

Google Scholar

[21] Kumar R, Wyman CE, Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies, Bioresour. Technol. 100 (2009) 4203-4213.

DOI: 10.1016/j.biortech.2008.11.057

Google Scholar

[22] Berlin A, Maximenko V, Gilkes N, Saddler J, Optimization of enzyme complexes for lignocellulose hydrolysis, Biotechnol. Bioeng. 97 (2007) 287-296.

DOI: 10.1002/bit.21238

Google Scholar

[23] Kumar R, Wyman CE, Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnol. Bioeng. 102 (2009) 1544-1557.

DOI: 10.1002/bit.22203

Google Scholar

[24] Tu M, Saddler JN, Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood, Appl. Biochem. Biotechnol. 161 (2010) 274-287.

DOI: 10.1007/s12010-009-8869-4

Google Scholar

[25] Ouyang J, Dong ZW, Song XY, Lee X, Chen M, Yong QA, Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition, Bioresour. Technol. 101 (2010) 6685-6691.

DOI: 10.1016/j.biortech.2010.03.085

Google Scholar

[26] Borjesson J, Peterson R, Tjerneld F, Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition, Enzyme Microb. Technol. 40 (2007) 754-762.

DOI: 10.1016/j.enzmictec.2006.06.006

Google Scholar

[27] Yang B, Wyman CE, BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates, Biotechnol. Bioeng. 94 (2006) 611-617.

DOI: 10.1002/bit.20750

Google Scholar

[28] Huang XP, Monk C, Purification and characterization of acellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. Nov, World J. Microb. Biotechnol. 20 (2004) 85-92.

DOI: 10.1023/b:wibi.0000013316.12730.e7

Google Scholar

[29] Wei W, Yang C, Luo J, Lu CM, Wu YJ, Yuan S, Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase, J. Plant Physiol. 167 (2010) 1204-1210.

DOI: 10.1016/j.jplph.2010.03.017

Google Scholar

[30] Carey RE, Cosgrove DJ, Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins, Ann. Bot. 99 (2007) 1131-1141.

DOI: 10.1093/aob/mcm044

Google Scholar

[31] Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama JI, Takahashi H et al., Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swol, Appl. Environ. Microbiol. 76 (2010) 2556-2561.

DOI: 10.1128/aem.02499-09

Google Scholar

[32] Yao Q, Sun TT, Liu WF, Chen GJ, Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38, Biosci. Biotechnol. Biochem. 72 (2008) 2799-2805.

DOI: 10.1271/bbb.80124

Google Scholar

[33] Jia Ouyang et al., Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycoladdition, Bioresour. Technol. 17 (2010) 6685-6691.

DOI: 10.1016/j.biortech.2010.03.085

Google Scholar

[34] TuMB, Chandra RP, Saddler JN, Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates, Biotechnol. Prog. 23 (2007) 398-406.

DOI: 10.1021/bp060354f

Google Scholar

[35] Qi B, Chen X, Su Y, Wan Y, Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose, Bioresour. Technol. 102 (2011) 2881-2889.

DOI: 10.1016/j.biortech.2010.10.092

Google Scholar

[36] Steele E, Raj S, Nghiem J, Stowers M, Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion treated corn stover, Appl. Biochem. Biotechnol. 121 (2005) 901-910.

DOI: 10.1007/978-1-59259-991-2_77

Google Scholar

[37] Tu MB, Chandra RP, Saddler JN, Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine, Biotechnol. Prog. 23 (2007) 1130-1137.

DOI: 10.1021/bp070129d

Google Scholar

[38] Gomez JM, Romero MD, Fernandez TM, Garcia S, Immobilization and enzymatic activity of β-glucosidase on mesoporous SBA-15 silica, J. Porous. Mater. 17 (2010) 657-662.

DOI: 10.1007/s10934-009-9335-y

Google Scholar

[39] Karagulyan HK, Gasparyan VK, Decker SR, Immobilization of fungal β-glucosidase on silica gel and kaolin carriers, Appl. Biochem. Biotechnol. 146 (2008) 39-47.

DOI: 10.1007/s12010-007-8065-3

Google Scholar

[40] Jones PO, Vasudevan PT, Cellulose hydrolysis by immobilized Trichoderma reesei cellulose, Biotechnol. Lett. 32 (2010) 103-106.

DOI: 10.1007/s10529-009-0119-x

Google Scholar

[41] Liao HD, Chen D, Yuan L, Zheng M, Zhu YH, Liu XM, Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose, Carbohydr. Polym. 82 (2010) 600-604.

DOI: 10.1016/j.carbpol.2010.05.021

Google Scholar

[42] Zhang MJ, Su RX, Li Q, QiW, He ZM, Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor, BioEnerg. Res. 4 (2011) 134-140.

DOI: 10.1007/s12155-010-9107-1

Google Scholar

[43] Qing Q, Yang B, Wyman CE, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresour. Technol. 101 (2010) 9624-9630.

DOI: 10.1016/j.biortech.2010.06.137

Google Scholar

[44] Panagiotou G, Olsson L, Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates, Biotechnol. Bioeng. 96 (2007) 250-258.

DOI: 10.1002/bit.21100

Google Scholar

[45] Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M, Inhibition of cellulases by phenols, Enzyme Microb. Technol. 46 (2010) 170-176.

DOI: 10.1016/j.enzmictec.2009.11.001

Google Scholar

[46] Yu B, Chen HZ, Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw, Bioresour. Technol. 101 (2010) 9114-9119.

DOI: 10.1016/j.biortech.2010.07.033

Google Scholar

[47] Gray KA, Zhao L, Emptage M, Bioethanol, Curr. Opin. Chem. Biol. 2 (2006) 141-146.

Google Scholar

[48] Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM, Ethanol can contribute to energy and environmental goals, Science 311 (2006) 506-508.

DOI: 10.1126/science.1121416

Google Scholar

[49] WANG Chao, ZHANG Chao-hua, Study progress of enzymatic hydrolysis for cellulosic resources to produce fuel alcohol, Journal of Cellulose Science and Technology 4 (2003) 52-59. (in Chinese)

Google Scholar