[1]
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al., Features of promising technologies for pretreatment of lignocellulose biomass, Bioresour. Technol. 6 (2005) 673-686.
Google Scholar
[2]
ALVIRA P, TOMAS P E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol. 13 (2010) 4851 -4861.
DOI: 10.1016/j.biortech.2009.11.093
Google Scholar
[3]
Gupta, R., Sharma, K. K., &Kuhad,R. C., Separate hydrolysis and fermentation (SHF) of P. juliflora, a woody substrate for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 3498, Bioresour. Technol. 3 (2009) 1214-1220.
DOI: 10.1016/j.biortech.2008.08.033
Google Scholar
[4]
Rishi Gupta, Yogender Pal Khasa, Ramesh Chander Kuhad, Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials, Carbohydr. Polym. 3 (2011) 1103-1109.
DOI: 10.1016/j.carbpol.2010.12.074
Google Scholar
[5]
Kuhar, S., Nair, L. M., & Kuhad, R. C., Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol, Can. J. Microbiol. 54 (2008) 305-313.
DOI: 10.1139/w08-003
Google Scholar
[6]
ZABIHI S, ALINIA R, ESMAEILZADEH F, et al., Pretreatment of wheat straw using steam, steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production, Biosyst. Eng. 3 (2010) 288-297.
DOI: 10.1016/j.biosystemseng.2009.11.007
Google Scholar
[7]
KIM T H, LEE Y Y, Pretreatment and fractionation of corn stover by ammonia recycle percolation process, Bioresour. Technol. 96 (2005) 2007-2013.
DOI: 10.1016/j.biortech.2005.01.015
Google Scholar
[8]
Yang, B., &Wyman, C. E., Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose, Biotechnol. Bioeng. 86 (2004) 88-95.
DOI: 10.1002/bit.20043
Google Scholar
[9]
TAHERZADEH M J, KARIMI K, Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review, Int. J. Mol. Sci. 9 (2008) 1621-1651.
DOI: 10.3390/ijms9091621
Google Scholar
[10]
Varga, E., Klinke, H.B., Reczey, K., Thomsen, A.B., High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol, Biotechnol. Bioeng. 88 (2004) 567-574.
DOI: 10.1002/bit.20222
Google Scholar
[11]
Jorgensen, H., Vibe-Pedersen, J., Larsen, J., Felby, C., Liquefaction of lignocellulose at high-solids concentrations, Biotechnol. Bioeng. 96 (2007) 862-870.
DOI: 10.1002/bit.21115
Google Scholar
[12]
Zhang J, Chu DQ, Huang J, Yu ZC, Dai GC, Bao J, Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor, Biotechnol. Bioeng. 105 (2010) 718-728.
DOI: 10.1002/bit.22593
Google Scholar
[13]
Zhang MJ, Wang F, Su RX, Qi W, He ZM, Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment, Bioresour. Technol. 101 (2010) 4959-4964.
DOI: 10.1016/j.biortech.2009.11.010
Google Scholar
[14]
Zhang MJ, Su RX, Li Q, Qi W, He ZM, Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor, BioEnerg. Res. 4 (2011) 134-140.
DOI: 10.1007/s12155-010-9107-1
Google Scholar
[15]
Andric P, Meyer AS, Jensen PA, Dam-Johansen K, Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II: Quantification of inhibition and suitability of membrane reactors, Biotechnol. Adv. 28 (2010) 407-425.
DOI: 10.1016/j.biotechadv.2010.02.005
Google Scholar
[16]
Rosgaard, L. et al., Efficiency of new fungal cellulase systems in boosting enzymatic degradation of Barley Straw Lignocellulose, Biotechnol. Prog. 22 (2006) 493-498.
DOI: 10.1021/bp050361o
Google Scholar
[17]
Sukumaran, R.K., Singhania, R.R., Mathew, G.M., Pandey, A., Cellulase productionsing biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production, Renew. Energy. 34 (2009) 421-424.
DOI: 10.1016/j.renene.2008.05.008
Google Scholar
[18]
Zhang MJ, Su RX, QiW, He ZM, Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes, Appl. Biochem. Biotechnol. 160 (2010) 1407-1414.
DOI: 10.1007/s12010-009-8602-3
Google Scholar
[19]
Kumar R, Wyman CE, Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies, Biotechnol. Bioeng. 102 (2009) 457-467.
DOI: 10.1002/bit.22068
Google Scholar
[20]
M.G. Tabka, Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment, Enzyme Microb. Technol. 39 (2006) 897-902.
DOI: 10.1016/j.enzmictec.2006.01.021
Google Scholar
[21]
Kumar R, Wyman CE, Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies, Bioresour. Technol. 100 (2009) 4203-4213.
DOI: 10.1016/j.biortech.2008.11.057
Google Scholar
[22]
Berlin A, Maximenko V, Gilkes N, Saddler J, Optimization of enzyme complexes for lignocellulose hydrolysis, Biotechnol. Bioeng. 97 (2007) 287-296.
DOI: 10.1002/bit.21238
Google Scholar
[23]
Kumar R, Wyman CE, Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnol. Bioeng. 102 (2009) 1544-1557.
DOI: 10.1002/bit.22203
Google Scholar
[24]
Tu M, Saddler JN, Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood, Appl. Biochem. Biotechnol. 161 (2010) 274-287.
DOI: 10.1007/s12010-009-8869-4
Google Scholar
[25]
Ouyang J, Dong ZW, Song XY, Lee X, Chen M, Yong QA, Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition, Bioresour. Technol. 101 (2010) 6685-6691.
DOI: 10.1016/j.biortech.2010.03.085
Google Scholar
[26]
Borjesson J, Peterson R, Tjerneld F, Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition, Enzyme Microb. Technol. 40 (2007) 754-762.
DOI: 10.1016/j.enzmictec.2006.06.006
Google Scholar
[27]
Yang B, Wyman CE, BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates, Biotechnol. Bioeng. 94 (2006) 611-617.
DOI: 10.1002/bit.20750
Google Scholar
[28]
Huang XP, Monk C, Purification and characterization of acellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. Nov, World J. Microb. Biotechnol. 20 (2004) 85-92.
DOI: 10.1023/b:wibi.0000013316.12730.e7
Google Scholar
[29]
Wei W, Yang C, Luo J, Lu CM, Wu YJ, Yuan S, Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase, J. Plant Physiol. 167 (2010) 1204-1210.
DOI: 10.1016/j.jplph.2010.03.017
Google Scholar
[30]
Carey RE, Cosgrove DJ, Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins, Ann. Bot. 99 (2007) 1131-1141.
DOI: 10.1093/aob/mcm044
Google Scholar
[31]
Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama JI, Takahashi H et al., Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swol, Appl. Environ. Microbiol. 76 (2010) 2556-2561.
DOI: 10.1128/aem.02499-09
Google Scholar
[32]
Yao Q, Sun TT, Liu WF, Chen GJ, Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38, Biosci. Biotechnol. Biochem. 72 (2008) 2799-2805.
DOI: 10.1271/bbb.80124
Google Scholar
[33]
Jia Ouyang et al., Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycoladdition, Bioresour. Technol. 17 (2010) 6685-6691.
DOI: 10.1016/j.biortech.2010.03.085
Google Scholar
[34]
TuMB, Chandra RP, Saddler JN, Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates, Biotechnol. Prog. 23 (2007) 398-406.
DOI: 10.1021/bp060354f
Google Scholar
[35]
Qi B, Chen X, Su Y, Wan Y, Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose, Bioresour. Technol. 102 (2011) 2881-2889.
DOI: 10.1016/j.biortech.2010.10.092
Google Scholar
[36]
Steele E, Raj S, Nghiem J, Stowers M, Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion treated corn stover, Appl. Biochem. Biotechnol. 121 (2005) 901-910.
DOI: 10.1007/978-1-59259-991-2_77
Google Scholar
[37]
Tu MB, Chandra RP, Saddler JN, Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine, Biotechnol. Prog. 23 (2007) 1130-1137.
DOI: 10.1021/bp070129d
Google Scholar
[38]
Gomez JM, Romero MD, Fernandez TM, Garcia S, Immobilization and enzymatic activity of β-glucosidase on mesoporous SBA-15 silica, J. Porous. Mater. 17 (2010) 657-662.
DOI: 10.1007/s10934-009-9335-y
Google Scholar
[39]
Karagulyan HK, Gasparyan VK, Decker SR, Immobilization of fungal β-glucosidase on silica gel and kaolin carriers, Appl. Biochem. Biotechnol. 146 (2008) 39-47.
DOI: 10.1007/s12010-007-8065-3
Google Scholar
[40]
Jones PO, Vasudevan PT, Cellulose hydrolysis by immobilized Trichoderma reesei cellulose, Biotechnol. Lett. 32 (2010) 103-106.
DOI: 10.1007/s10529-009-0119-x
Google Scholar
[41]
Liao HD, Chen D, Yuan L, Zheng M, Zhu YH, Liu XM, Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose, Carbohydr. Polym. 82 (2010) 600-604.
DOI: 10.1016/j.carbpol.2010.05.021
Google Scholar
[42]
Zhang MJ, Su RX, Li Q, QiW, He ZM, Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor, BioEnerg. Res. 4 (2011) 134-140.
DOI: 10.1007/s12155-010-9107-1
Google Scholar
[43]
Qing Q, Yang B, Wyman CE, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresour. Technol. 101 (2010) 9624-9630.
DOI: 10.1016/j.biortech.2010.06.137
Google Scholar
[44]
Panagiotou G, Olsson L, Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates, Biotechnol. Bioeng. 96 (2007) 250-258.
DOI: 10.1002/bit.21100
Google Scholar
[45]
Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M, Inhibition of cellulases by phenols, Enzyme Microb. Technol. 46 (2010) 170-176.
DOI: 10.1016/j.enzmictec.2009.11.001
Google Scholar
[46]
Yu B, Chen HZ, Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw, Bioresour. Technol. 101 (2010) 9114-9119.
DOI: 10.1016/j.biortech.2010.07.033
Google Scholar
[47]
Gray KA, Zhao L, Emptage M, Bioethanol, Curr. Opin. Chem. Biol. 2 (2006) 141-146.
Google Scholar
[48]
Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM, Ethanol can contribute to energy and environmental goals, Science 311 (2006) 506-508.
DOI: 10.1126/science.1121416
Google Scholar
[49]
WANG Chao, ZHANG Chao-hua, Study progress of enzymatic hydrolysis for cellulosic resources to produce fuel alcohol, Journal of Cellulose Science and Technology 4 (2003) 52-59. (in Chinese)
Google Scholar