[1]
R.F. Zollo, Cement and Concrete Composites, Vol. 19 (1997), pp.107-122.
Google Scholar
[2]
S. Wang, V.C. Li, in: International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications, editted by G. Fischer and V. C. Li , pp.65-73, RILEM Publications SARL (2006).
Google Scholar
[3]
V.C. Li, in: Fiber reinforced concrete: Present and the Future, editted by N. Banthia, A. Bentur, A. Mufti , pp.64-97, Canadian Society for Civil Engineering, Montreal (1998).
Google Scholar
[4]
V.C. Li, Journal of Advanced Concrete Technology, Vol. 1 (2003), pp.215-230.
Google Scholar
[5]
V.C. Li, in: Concrete Construction Engineering Handbook, editted by E. Nawy, Chapter 24, (2007).
Google Scholar
[6]
V.C. Li, T. Horikoshi, A. Ogawa, S. Torigoe, T. Saito, ACI Materials Journal, Vol. 101 (2004) 242-248.
Google Scholar
[7]
V.C. Li, H-J Kong, S.G. Bike, Fiber Reinforced High Performance Concrete Material, University of Michigan, Ann Arbor, MI, (2000)
Google Scholar
[8]
T. Kanda, Z. Lin, Journal of Materials in Civil Engineering, Vol. 12 (2000), pp.147-156.
Google Scholar
[9]
V.C. Li, S. Wang, C. Wu, ACI Materials Journal, Vol. 98 (2001), pp.483-492.
Google Scholar
[10]
V.C. Li, H. C. Wu, M. Maalej, D.K. Mishra, Journal of American Ceramics Society, Vol. 79 (1996), pp.74-78.
Google Scholar
[11]
H. Krenchel, H. Stang, (1988), in: Proceedings of the Second International Symposium on Brittle Matrix Composites - BMC 2, edited by A.M. Brandt and I.H. Marshall, p.20, (1988).
Google Scholar
[12]
V.C. Li, S. Wang, C. Wu, ACI Materials Journal, Vol.98 (2001), pp.483-492.
Google Scholar
[13]
V.C. Li, D.K. Mishra, H. Wu, Materials and Structures, Vol. 28 (1995), pp.586-595.
Google Scholar
[14]
V.C. Li, H. Wu, M. Maalej, D. Mishra, And T. Hashida, Journal of the American Ceramic Society, Vol. 79 (1996), pp.74-78.
Google Scholar
[15]
M. Maalej, S.T. Quek, J. Zhang, Journal of Materials in Civil Engineering, ASCE, Vol. 17 (2005), pp.144-152.
Google Scholar
[16]
B. Xu, H. Toutanji, J. Gilbert, Impact Resistance of poly(vinyl alcohol) fiber reinforced high-performance organic aggregate cementitious material, University of Alabama,(2009).
DOI: 10.1016/j.cemconres.2009.09.006
Google Scholar
[17]
N. Wang, S. Mindess, K. Ko, Cement and Concrete Research, Vol.26 (1996), pp.363-376.
Google Scholar
[18]
AS 1012.9 Methods of testing concrete: Determination of the compressive strength of concrete specimens, SAI Global, (1999).
Google Scholar
[19]
AS 1012.17 Methods of testing concrete: Determination of the static chord modulus of elasticity and Poisson's ratio of concrete specimens, SAI Global, (1997).
Google Scholar
[20]
AS 1012.11 Methods of testing concrete: Determination of the modulus of rupture, SAI Global, (1997).
Google Scholar
[21]
ASTM C78 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
DOI: 10.1520/c0078_c0078m-16
Google Scholar
[22]
ASTM C1273-05, Standard Test Method for Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures, (2010).
Google Scholar
[23]
J.R. Davis, Tensile Testing, Second Edition, (ASM International, 2004).
Google Scholar
[24]
Y.Wang, S. Backer, and V.C. Li, Composites, Vol. 20 (1989), pp.265-274.
Google Scholar