Leaching Mechanism of Cr(VI) from Chromite Ore Processing Residue with Nitric Acid

Article Preview

Abstract:

The leaching behavior of hexavalent chromium (Cr(VI)) and major metal elements relevant to Cr(VI) leaching from chromite ore processing residue (COPR) to HNO3 are investigated by batch leaching tests. According to the test results, aqueous Cr(VI) accounted for 70-80% of the content of total Cr. Cr(VI) concentration was controlled by the dissolution degree of Cr(VI)-bearing minerals (such as hydroandradite) as the pH value ranged from 7.58 to 10.47, and by the adsorption degree of Cr(VI) on metal amorphous precipitates as pH value ranged from 6.18 to 7.58. It takes time for the penetration of acid into COPR and the release of alkalinity from the interior zone of particles. So, it could be speculated that the fine-sized particles would react with acid more effectively. 14mol HNO3 per 1kg COPR is needed to maintain the pH value to achieve 7.5 for 48 hours. This indicates the acid neutralization capacity of the test sample is relatively large. It suggests that the application of acid treatment method for COPR disposal is feasible but costly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 450-451)

Pages:

764-768

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Darrie: J. Environmental Geochemistry and Health. Vol. 23 (2001), p.187.

Google Scholar

[2] M. Wazne, S. C. Jagupilla, D. H. Moon, C. Christodoulatos, A. Koutsospyros: J. Journal of Environmental Quality. Vol. 37 (2008), p.2125.

DOI: 10.2134/jeq2007.0443

Google Scholar

[3] S. Hillier, M. J. Roe, J. S. Geelhoed, A. R. Fraser, J. G. Farmer, E. Paterson: J. Science of The Total Environment. Vol. 308 (2003), p.195.

DOI: 10.1016/s0048-9697(02)00680-0

Google Scholar

[4] M. Chrysochoou, D. Dermatas: J. J. Hazard. Mater. Vol. 141 (2007), p.370.

Google Scholar

[5] M. Chrysochoou, D. Dermatas, D. G. Grubb, D. H. Moon, C. Christodoulatos: J. Journal of Geotechnical and Geoenvironmental Engineering. Vol. 136 (2010), p.510.

DOI: 10.1061/(asce)gt.1943-5606.0000233

Google Scholar

[6] M. Chrysochoou, S. C. Fakra, M. A. Marcus, D. H. Moon, D. Dermatas: J. Environ Sci Technol. Vol. 43 (2009), p.5461.

DOI: 10.1021/es9005338

Google Scholar

[7] M. Chrysochoou, D. H. Moon, S. Fakra, M. Marcus, D. Dermatas, C. Christodoulatos: J. Glob. Nest. J. Vol. 11 (2009), p.318.

Google Scholar

[8] S. Hillier, D. G. Lumsdon, R. Brydson, E. Paterson: J. Environ Sci Technol. Vol. 41 (2007), p.1921.

Google Scholar

[9] J. S. Geelhoed, J. C. L. Meeussen, S. Hillier, D. G. Lumsdon, R. P. Thomas, J. G. Farmer, E. Paterson: J. Geochimica Et Cosmochimica Acta. Vol. 66 (2002), p.3927.

DOI: 10.1016/s0016-7037(02)00977-8

Google Scholar

[10] J. S. Geelhoed, J. C. L. Meeussen, M. J. Roe, S. Hillier, R. P. Thomas, J. G. Farmer, E. Paterson: J. Environ Sci Technol. Vol. 37 (2003), p.3206.

Google Scholar

[11] J. M. Tinjum, C. H. Benson, T. B. Edil: J. Science of The Total Environment. Vol. 391 (2008), p.13.

Google Scholar

[12] J. S. Geelhoed, J. C. L. Meeussen, D. G. Lumsdon, M. J. Roe, R. P. Thomas, J. G. Farme, E. Paterson: J. Land Contamination & Reclamation. Vol. 40 (1999), p.271.

Google Scholar

[13] T. E. Higgins, A. R. Halloran, M. E. Dobbins, A. J. Pittignano: J. Journal of the Air & Waste Management Association. Vol. 48 (1998), p.1100.

Google Scholar

[14] C.-H. Weng, C. P. Huang, P. F. Sanders: J. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. Vol. 6 (2002), p.6.

Google Scholar

[15] K. Xiao, G. Li, "Mineralogical Characterization of Chromium Ore Processing Residue," 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), 22-24 April 2011, Piscataway, NJ, USA, p.4217, 2011.

DOI: 10.1109/icetce.2011.5774298

Google Scholar

[16] M. Chrysochoou, D. H. Moon, M. Wazne, C. Christodoulatos, X. Meng, M. Kaouris, J. Morris, C. French, B. M. Sass, "Mineralogical analysis of chromite ore processing residue by X-ray powder diffraction," 8th International In-situ and On-site Bioremediation Symposium, Baltimore, Maryland, 2005.

DOI: 10.1520/stp37685s

Google Scholar

[17] D. S. Kosson, H. A. van der Sloot, F. Sanchez, A. C. Garrabrants: J. Environmental Engineering Science. Vol. 19 (2002), p.159.

Google Scholar