[1]
E.J. Anderson: A Continuous Model for Job-Shop Scheduling. PhD. Thesis, University of Cambridge, Cambridge, U.K.,(1978).
Google Scholar
[2]
E.J. Anderson, P. Nash, and A. F. Perold: Some properties of a class of continuous linear programs, SIAM J. Control Optim., vol.21, (1983), pp.258-265.
DOI: 10.1137/0321046
Google Scholar
[3]
E.J. Anderson, A.B. Philpott: A continuous-time network simplex algorithm, Networks, vol.19, (1989), pp.395-425.
DOI: 10.1002/net.3230190403
Google Scholar
[4]
L. Fleischer and J. Sethuraman: Efficient algorithms for separated continuous linear programs: the multi-commodity flow problem with holding costs and extensions, Math. Oper. Res., vol. 30,(2005), pp.916-938.
DOI: 10.1287/moor.1050.0166
Google Scholar
[5]
X. Luo and D. Bertsimas: A new algorithm for state-constrained separated continuous linear programs, SIAM J. Control Optim., vol.37, (1998), pp.177-210.
DOI: 10.1137/s0363012995292664
Google Scholar
[6]
M.C. Pullan: An algorithm for a class of continuous linear programs, SIAM J. Control Optim., vol. 31, (1993), pp.1558-1577.
DOI: 10.1137/0331073
Google Scholar
[7]
M.C. Pullan: Forms of optimal solutions for separated continuous linear programs, SIAM J. Control Optim., vol.33, (1995), pp.1952-1977.
DOI: 10.1137/s0363012993247858
Google Scholar
[8]
M.C. Pullan: A duality theory for separated continuous linear programs, SIAM J. Control Optim., vol.34, (1996), pp.931-965.
DOI: 10.1137/s0363012993257507
Google Scholar
[9]
M.C. Pullan: Linear optimal control problems with piecewise analytic solutions, J. Math. Anal. Appl., vol.197, (1996),pp.207-226.
DOI: 10.1006/jmaa.1996.0016
Google Scholar
[10]
M.C. Pullan: A study of general dynamic network programs with arc time-delays, SIAM J. Optim., vol.7, (1997), pp.889-912.
DOI: 10.1137/s1052623495288180
Google Scholar
[11]
M.C. Pullan: Convergence of a general class of algorithms for separated continuous linear programs, SIAM J. Optim., vol.10, (2000), pp.722-731.
DOI: 10.1137/s1052623494278827
Google Scholar
[12]
M.C. Pullan: An extended algorithm for separated continuous linear programs, Math. Program., vol.93, (2002), pp.415-451.
DOI: 10.1007/s10107-002-0307-0
Google Scholar
[13]
X. Wang: The Duality Theory for Generalized Separated Continuous Conic Programming, submitted.
Google Scholar
[14]
G. Weiss: A simplex based algorithm to solve separated continuous linear programs, Math. Program., vol.115, (2008), pp.151-198.
DOI: 10.1007/s10107-008-0217-x
Google Scholar