[1]
T. V. Ojumu, J. Petersen, G. E. Searby, and G. S. Hansford, A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching, Hydrometallurgy, vol. 83, pp.21-28, (2006).
DOI: 10.1016/j.hydromet.2006.03.033
Google Scholar
[2]
A. K. Halinen, N. Rahunen, A. H. Kaksonen, and J. A. Puhakka, Heap bioleaching of a complex sulfide ore Part I: Effect of pH on metal extraction and microbial composition in pH controlled columns, Hydrometallurgy, vol. 98, pp.92-100, (2009).
DOI: 10.1016/j.hydromet.2009.04.005
Google Scholar
[3]
A. K. Halinen, N. Rahunen, A. H. Kaksonen, and J. A. Puhakka, Heap bioleaching of a complex sulfide ore: Part II. Effect of temperature on base metal extraction and bacterial compositions, Hydrometallurgy, vol. 98, pp.101-107, (2009).
DOI: 10.1016/j.hydromet.2009.04.004
Google Scholar
[4]
H. M. Lizama, Copper bioleaching behaviour in an aerated heap, International Journal of Mineral Processing, vol. 62, pp.257-269, (2001).
DOI: 10.1016/s0301-7516(00)00057-0
Google Scholar
[5]
N. Pradhan, et al., Heap bioleaching of chalcopyrite: A review,. Minerals Engineering, vol. 21, pp.355-365, (2008).
DOI: 10.1016/j.mineng.2007.10.018
Google Scholar
[6]
A. Rubio and F.J. Garcia-Frutos, Bioleaching of an extremely thermophilic culture for chalcopyritic materials,. Minerals Engineering, vol. 15, pp.689-694, (2002).
DOI: 10.1016/s0892-6875(02)00124-3
Google Scholar
[7]
M. Qui, et al., A comparison of bioleaching of chalcopyrite using pure culture or mixed culture,. Minerals Engineering, vol. 18, pp.987-990, (2005).
DOI: 10.1016/j.mineng.2005.01.004
Google Scholar
[8]
Y. Rodriguez, et al., New information on the chalcopyrite bioleaching mechanism at low and high temperature,. Hydrometallurgy, vol. 71, pp.47-56, (2003).
DOI: 10.1016/s0304-386x(03)00173-7
Google Scholar
[9]
R.O. Sack and M.S. Ghiorso, Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2,. Contributions to Mineralogy and Petrology, vol. 102, pp.41-68, (1989).
DOI: 10.1007/bf01160190
Google Scholar
[10]
L.T. Elkins and T.L. Grove, Ternary feldspar experiments and thermodynamic models,. American Mineralogist, vol. 75, pp.544-559, (1990).
Google Scholar
[11]
R.G. Berman, Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2,. Journal of Petrology, vol. 29, pp.445-522, (1988).
DOI: 10.1093/petrology/29.2.445
Google Scholar
[12]
M.S. Ghiorso, et al., Thermodynamics of the Amphiboles: Fe, Mg-cummingtonite solid solutions,. American Mineralogist, vol. 80, pp.502-519, (1995).
DOI: 10.2138/am-1995-5-611
Google Scholar