Effects of N/P Atomic Ratio on the Growth of Alexandrium Tamarense at Various Initial Phosphate Concentrations

Article Preview

Abstract:

To reveal the relationship between nutrient input and red tide outbreaks, the effects of N/P atomic ratio on the specific growth rate of Alexandrium tamarense is analyzed under various initial phosphate concentrations in laboratory cultures. The results show that both the cell density and the specific growth rate of A.tamarense first increased when the N/P atomic ratio ≤ (N/P)opt and then decreased when the N/P atomic ratio ≥ (N/P)opt in low-P-grown cultures, followed by those in medium-P-grown and high-P-grown cultures. And the highest cell density in low-P-grown, medium-P-grown, and high-P-grown cultures is 1776×104, 4094×104 and 6891×104 cells/L, respectively. The maximum specific growth rate is 4.022, 5.307 and 9.672 d-1, respectively. It seems that the higher the initial phosphate concentrations, the greater the probability of red tide outbreaks.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

1289-1296

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.J. Smayda, Novel and nuisance phytoplankton blooms in the sea: evidence for global epidemic, " In: E. Graneli, B. Sundstrom, R. Edler, D.M. Anderson (eds. ), "Toxic Marine Phytoplankton, Elsevier Science New York, 1990, pp.29-40.

DOI: 10.1007/978-3-642-75280-3_26

Google Scholar

[2] G.M. Hallegraeff, Harmful algal blooms: A global overview, " In: G.M. Hallegraeff, D.M. Anderson, A.D. Cembella(eds. ), "Manual on Harmful Marine Microalgae, IOC Manuals and Guides No. 33 UNESCO, 1995, pp.1-18.

Google Scholar

[3] H.W. Paerl, Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as new nitrogen and other nutrient sources, Limnology and Oceanography, vol. 42, 1997, pp.1154-1165.

DOI: 10.4319/lo.1997.42.5_part_2.1154

Google Scholar

[4] C.O. Kirst, Salinity tolerance of eukaryotic marine algae, Annu Rev Plant Physiol Plant Mol Bioi, vol. 40, 1989, pp.21-53.

DOI: 10.1146/annurev.pp.41.060190.000321

Google Scholar

[5] G.M. Hallegraeff, A review of harmful algal blooms and their apparent global increase, Phycologia, vol. 32, 1993, pp.79-99.

DOI: 10.2216/i0031-8884-32-2-79.1

Google Scholar

[6] R.E. Hecky, P. Kilham, Nutrient limitation of Phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment, Limnology and Oceanography, vol. 33, 1988, pp.796-822.

DOI: 10.4319/lo.1988.33.4_part_2.0796

Google Scholar

[7] J.K. Flynn, How critical is the critical N: P ratio?, Journal of Phycology, vol. 38, 2002, pp.961-970.

Google Scholar

[8] J.F. Maguer, M. Wafar, C. Madec, P. Morin, et al., Nitrogen and phosphorus requirements of an Alexandrium minutum bloom in the Penzé estuary, France, Limnology and Oceanography, vol. 49, 2004, pp.1108-1114.

DOI: 10.4319/lo.2004.49.4.1108

Google Scholar

[9] I.J. Hodgkiss, K.C. Ho, Are changes in N: P ratios in coastal water key to increase red tide blooms?, Hydrobiology, vol. 352, 1997, pp.141-147.

DOI: 10.1007/978-94-011-5234-1_14

Google Scholar

[10] R. Riegman, Mechanisms behind eutrophication induced novel algal blooms, Netherlands Institute for Sea Research, vol. 9, 1991, pp.1-51.

Google Scholar

[11] H. Liu, E.A. Laws, T.A. Villareal, E.J. Buskey, Nutrient-limited growth of Aureoumbra lagunensis (PelagoPhyeeae), with implications for its capability to outgrow Other phytoplankton species in phosphate-limited environments, Journal of Phycology, vol. 37, 2001, pp.500-508.

DOI: 10.1046/j.1529-8817.2001.037004500.x

Google Scholar

[12] D.M. Anderson, D.M. Kulis, G.J. Doucette, J.C. Gallagher, et al., Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United State and Canada, Marine Biology, vol. 120, 1994, pp.467-478.

DOI: 10.1007/bf00680222

Google Scholar

[13] D.M. Anderson, Bloom dynamics of toxic Alexandrium species in the northeastern U.S., Limnology and Oceanography, vol. 42, 1997, pp.1009-1022.

DOI: 10.4319/lo.1997.42.5_part_2.1009

Google Scholar

[14] P.M. Glibert, T.M. Kana, D.M. Anderson, Photosynthetic response of Protogonyaulax tamarensis during growth in a natural bloom and in batch culture, Mar Ecol Prog Ser, vol. 42, 1988, pp.303-309.

DOI: 10.3354/meps042303

Google Scholar

[15] M.S. Han, M. Terazaki. A toxic dinoflagellate bloom of Alexandrium tamarense (Lebour) Balech in Tokyo Bay, Journal of Plankton Research, vol. 15, 1993, pp.1425-1428.

DOI: 10.1093/plankt/15.12.1425

Google Scholar

[16] K. Ichimi, M. Yamasaki, Y. Okumura, T. Suzuki, The growth and cyst formation of a toxic dinoflagellate, Alexandrium tamarense, at low water temperature in north-eastern Japan, J Exp Mar Biol Ecol, vol. 261, 2001, pp.17-29.

DOI: 10.1016/s0022-0981(01)00256-8

Google Scholar

[17] A.M. Weise, M. Levasseur, F.J. Saucier, S. Senneville, et al., The link between precipitation, river runoff, and blooms of the toxic dinoflagellate Alexandrium tamarense in the St. Lawrence, Can J Fish Aquat Sci, vol. 59, 2002, pp.464-73.

DOI: 10.1139/f02-024

Google Scholar

[18] A.M. Gayoso, V.K. Fulco, Occurrence patterns of Alexandrium tamarense(Lebour)Balech populations in the Golfo Nuevo (Patagonia, Argentina), with observations on ventral pore occurrence in natural and cultured cells, Harmful Algae, vol. 5, 2006, pp.233-241.

DOI: 10.1016/j.hal.2004.12.010

Google Scholar

[19] G.K.Y. Siu, M.L.C. Young, D.K.O. Chan, Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella, Hydrobiologia, vol. 352, 1997, pp.117-40.

DOI: 10.1007/978-94-011-5234-1_13

Google Scholar

[20] D.Z. Wang, D.P.H. Hsieh, Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture, Marine Pollution Bulletin, vol. 45, 2002, pp.286-289.

DOI: 10.1016/s0025-326x(02)00183-2

Google Scholar

[21] G.L. Boyer, J.J. Sullivan, R.J. Anderson, P.J. Harrsion, et al., Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis, Marine Biology, vol. 96, 1987, pp.123-128.

DOI: 10.1007/bf00394845

Google Scholar

[22] P.T. Lim, C.P. Leaw, A. Kobiyama, T. Ogata, Growth and toxin production of tropical Alexandrium minutum Halim (Dinophyceae) under various nitrogen to phosphorus ratios, J Appl Phycol, 2009, DOI 10. 1007/s10811-009-9443-8.

DOI: 10.1007/s10811-009-9443-8

Google Scholar

[23] GB3097-1997, National Seawater Quality Standard of China, China Environmental Science Press, Beijing, 1998, pp.1-7. (in Chinese).

Google Scholar

[24] R.R. Guillard, J.H. Ryther, Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,. Canadian Journal of Microbiology, vol. 8, 1962, pp.229-239.

DOI: 10.1139/m62-029

Google Scholar

[25] P.J. Harrison, R.E. Waters, F.J.R. Taylor, A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton, Journal of Phycology, vol. 16, 1980, pp.28-35.

DOI: 10.1111/j.0022-3646.1980.00028.x

Google Scholar

[26] V.E. Shelford, Physiological animal geography, Journal of Morphology, vol. 22, 1911, pp.551-618.

Google Scholar

[27] M. Lynch, W. Gabriel, Environmental tolerance, American Naturalist, vol. 129, 1987, pp.283-303.

Google Scholar

[28] C.J.F. Ter Braak, Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse ( k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches, Chemometrics and Intelligent Laboratory Systems, vol. 28, 1995, pp.165-180.

DOI: 10.1016/0169-7439(95)80048-e

Google Scholar

[29] S.Y. Wen, D. Z Zhao, L. Zhao, J.H. Yang, et al., The tolerance response mod el of N/P ratios for harmful algal, Journal of Dalian Maritime University, vol. 35, 2009, pp.118-122. (in Chinese).

Google Scholar

[30] D.M. Anderson, D. M . Kulis, J.J. Sullivan, S. Hall, et al., Dynamics and physiology of saxitoxin production by the dinoflagellates Alexandrium spp., Mar Biol, vol. 104, 1990, pp.511-524.

DOI: 10.1007/bf01314358

Google Scholar

[31] K.J. Flynn, Physiology of toxic microalgae with special emphasis on toxin production: construction of dynamic models, " In: B. Reguera, J. Blanco, M.L. Fernandez, T. Wyatt (Eds. ), "Harmful Algae, Xunta de Galici and Intergovermental Oceanographic Commission of UNESCO, 1998, pp.315-320.

Google Scholar

[32] A. Matsuda, T. Nishijima, K. Fukami, Effects of nitrogen deficiency on the PSP production by Alexandrium catanella under axenic cultures, " In: T. Yasumoto, Y. Oshima, Y. Fukuyo (Eds. ), "Harmful and Toxic Algal Blooms, Intergovernmental Oceanographic Commission of UNESCO, 1996, pp.305-308.

Google Scholar

[33] G. Usup, D.M. Kulis, D.M. Anderson, Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense Var. compressum in laboratory cultures, Natural Toxins, vol. 2, 1994, pp.254-262.

DOI: 10.1002/nt.2620020503

Google Scholar

[34] C. Béchamin, D. Grzebyk, F. Hachame, C. Hummert, et al.,  Effect of different nitrogen/phosphorous nutrient ratios on the toxin content in Alexandrium minutum, Aquat Microb Ecol, vol. 20, 1999, pp.157-165.

DOI: 10.3354/ame020157

Google Scholar

[35] E.H. John, K.J. Flynn, Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): the effect of changing N: P supply ratios on internal toxin and nutrient levels, Eur J Phycol, vol. 35, 2000, pp.11-23.

DOI: 10.1017/s0967026200002572

Google Scholar

[36] D.F. Hwang, Y.H. LuInfluence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum, Toxicon, vol. 38, 2000, pp.1491-1503.

DOI: 10.1016/s0041-0101(00)00080-5

Google Scholar

[37] T. Yamamoto, K. Tarutani, Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamrense from Hiroshima Bay in the Seto Inland Sea, Japan, Phycol Res, vol. 47, 1999, pp.27-32.

DOI: 10.1111/j.1440-1835.1999.tb00280.x

Google Scholar

[38] M. Frangópulos, C. Guisande, E. deBlas, I. Maneiro, Toxin production and competitive abilities under phosphorus limitation of Alexandrium species, Harmful Algae, vol. 3, 2004, pp.131-139.

DOI: 10.1016/s1568-9883(03)00061-1

Google Scholar

[39] L. Ignatiades, O. Gotsis-Skretas, A. Metaxatos, Field and culture studies on the ecophysiology of the toxic dinoflagellate Alexandrium minutum (Halim) present in Greek coastal waters, Harmful Algae, vol. 6, 2007, pp.153-165.

DOI: 10.1016/j.hal.2006.04.002

Google Scholar