Review on Dynamic Membrane Reactor (DMBR) for Municipal and Industrial Wastewater Treatment

Article Preview

Abstract:

The dynamic membrane reactor (DMBR) combined the advantages of both microbial reactor and dynamic membrane, and it’s a new municipal wastewater treatment technology. This paper summarized the technical processes, mechanisms, characteristics and application of DMBR, and the future research aspects of DMBR is also included.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

1278-1284

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hongbo Liu, et al, Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor, Chemical Engineering Journal, 148 (2009) 290–295.

DOI: 10.1016/j.cej.2008.08.043

Google Scholar

[2] W. Fuchs, C. Resch, M. Kernstock, M. Mayer, and P. Schoeberl, Influence of operational conditions on the performance of a mesh filter activated sludge process, Water Research, vol. 39, p.803–810, (2005).

DOI: 10.1016/j.watres.2004.12.001

Google Scholar

[3] Yoshiaki Kiso, Yong-jun Jung, Takashi Ichinari, Minsoo Park, and Takane Kitao, Wastewater treatment performance of a filtration bio-reactor equiped with a mesh as a filter material, Water Research, vol. 34(17), pp.4143-4150, (2000).

DOI: 10.1016/s0043-1354(00)00201-3

Google Scholar

[4] Bin Fan and Xia Huang, Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment, Environmental Science & Technology. vol. 36(23), pp.5245-5251, (2002).

DOI: 10.1021/es025789n

Google Scholar

[5] V.T. Kuberkar, R. H. Davis, Modelling of fouling reduction by secondary membrane, J. Membr. Sci. 168 (2000) 243-258.

Google Scholar

[6] P. Cote, H. Buisson, M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater, Water Sci. Technol, 38 (1998) 437-442.

DOI: 10.2166/wst.1998.0688

Google Scholar

[7] Y. Miura, Y. Watanabe, S. Okabe, Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: Impact of biofilm formation, Environ, Sci. Technol. 41 (2) (2007) 632-638.

DOI: 10.1021/es0615371

Google Scholar

[8] Z. W. Wang, Z. C. Wu, G. P. Yu, J. F. Liu, Z, Zhou, Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors, J. Membr. Sci. 284 (2006) 87-94.

DOI: 10.1016/j.memsci.2006.07.006

Google Scholar

[9] P. Le-Clech, V. Chen, T. A. G. Fang, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci. 284 (2006) 17-53.

DOI: 10.1016/j.memsci.2006.08.019

Google Scholar

[10] K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Envirion. Sci. Technol. 39 (2005) 6293-6299.

DOI: 10.1021/es0502425

Google Scholar

[11] B. Q. Liao, Anaerobic membrane bioreactors: applications and research directions, Crit. Rev. Sci. Technol. 36 (2006) 489-530.

Google Scholar

[12] Marcinkowsky A. E, Kraus K A, Phillips H O, et al. Hyperfiltration studies. IV. Salt rejection by dynamically formed hydrous oxide membranes. Journal of the American Chemical Society, 1966, 88: 5744-5750.

DOI: 10.1021/ja00976a013

Google Scholar

[13] Vinod T. Kuberlar and Robert H. Davis, Modelling of fouling reduction by secondary membranes, Journal of Membrane Science, vol. 168, pp.243-258, (2000).

Google Scholar

[14] H. S. Lee, S. J. Park. Wastewater treatment in a hybrid biological reactor using powdered minerals: effects of organic loading rates on COD removal and nitrification [J]. Process Biochemistry, 2003, 38 (1): 81-88.

DOI: 10.1016/s0032-9592(02)00044-4

Google Scholar

[15] J. Y. Jung, et al. Son. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process [J]. Water Research, 2004, 38 (2): 347-354.

DOI: 10.1016/j.watres.2003.09.025

Google Scholar

[16] Smith P J, Vigneswaran S, et al. A new approach to backwash initiation in membrane systems. Journal of Membrane Science, 2006, 278: 381-389.

DOI: 10.1016/j.memsci.2005.11.024

Google Scholar

[17] Remize P J, et al. From a new method to consider backwash efficiency to the definition of remaining fouling. Desalination, 2006, 199: 86-88.

DOI: 10.1016/j.desal.2006.03.148

Google Scholar

[18] Bourgeous K N, Darby J L, Tchobanoglous G. Ultrafiltration of wastewater: Effects of particles, mode of operation, and backwash effectiveness. Water Research, 2001, 35 (1): 77-90.

DOI: 10.1016/s0043-1354(00)00225-6

Google Scholar

[19] S. Gao, Z. Y. Zhou, et al. Application of self-forming Biodynamic Membrane in Sludge Retaining. Water Purification. 2005. 24 (01).

Google Scholar

[20] Kiso. Y, Jung Y J, Ichinari T, et al. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Research, 2000, 34 (17): 4143-4150.

DOI: 10.1016/s0043-1354(00)00201-3

Google Scholar

[21] Remize P J, et al. Form a new method to consider backwash efficiency to the definition of remaining fouling. Desalination, 2006, 199: 86-88.

DOI: 10.1016/j.desal.2006.03.148

Google Scholar

[22] Bourgeous K N, et al. Ultrafiltration of wastewater: Effects of particles, mode of operation, and backwash effectiveness. Water Research, 2001, 35 (1): 77-90.

DOI: 10.1016/s0043-1354(00)00225-6

Google Scholar

[23] H. M. Zhang, S. Qiao, et al. Domestic Wastewater Treatment with Precoating Dynamic Membrane Bio-reactor. ACTA Scientiae Circumustantiae. 2005. 25. (2).

Google Scholar

[24] Al-Malack M H, Anderson G K. Cleaning techniques of dynamic membrane. Separation Purification Technology, 1997, 12 : 25-33.

DOI: 10.1016/s1383-5866(97)00012-9

Google Scholar

[25] F. Li, J. Li, et al. Application of Dynamic Membrane to Crossflow Microfiltration. Technology of Water Treatment, 2005. 31 (12).

Google Scholar

[26] J. Zhang, X. F. Qiu, et al. Online Aeration Backwashing in the Inverse DIRECTION OF Effluent Applied in Dynamic Membrane Bio-reactor. Environment Science. 2007. 28 (6).

Google Scholar

[27] T. Janus, et al, Modelling SMP and EPS formation and degradation kinetics with an extended A3M3 model, Desalination 261 (2010) 117-125.

DOI: 10.1016/j.desal.2010.05.021

Google Scholar