[1]
Hongbo Liu, et al, Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor, Chemical Engineering Journal, 148 (2009) 290–295.
DOI: 10.1016/j.cej.2008.08.043
Google Scholar
[2]
W. Fuchs, C. Resch, M. Kernstock, M. Mayer, and P. Schoeberl, Influence of operational conditions on the performance of a mesh filter activated sludge process, Water Research, vol. 39, p.803–810, (2005).
DOI: 10.1016/j.watres.2004.12.001
Google Scholar
[3]
Yoshiaki Kiso, Yong-jun Jung, Takashi Ichinari, Minsoo Park, and Takane Kitao, Wastewater treatment performance of a filtration bio-reactor equiped with a mesh as a filter material, Water Research, vol. 34(17), pp.4143-4150, (2000).
DOI: 10.1016/s0043-1354(00)00201-3
Google Scholar
[4]
Bin Fan and Xia Huang, Characteristics of a self-forming dynamic membrane coupled with a bioreactor for municipal wastewater treatment, Environmental Science & Technology. vol. 36(23), pp.5245-5251, (2002).
DOI: 10.1021/es025789n
Google Scholar
[5]
V.T. Kuberkar, R. H. Davis, Modelling of fouling reduction by secondary membrane, J. Membr. Sci. 168 (2000) 243-258.
Google Scholar
[6]
P. Cote, H. Buisson, M. Praderie, Immersed membranes activated sludge process applied to the treatment of municipal wastewater, Water Sci. Technol, 38 (1998) 437-442.
DOI: 10.2166/wst.1998.0688
Google Scholar
[7]
Y. Miura, Y. Watanabe, S. Okabe, Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: Impact of biofilm formation, Environ, Sci. Technol. 41 (2) (2007) 632-638.
DOI: 10.1021/es0615371
Google Scholar
[8]
Z. W. Wang, Z. C. Wu, G. P. Yu, J. F. Liu, Z, Zhou, Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors, J. Membr. Sci. 284 (2006) 87-94.
DOI: 10.1016/j.memsci.2006.07.006
Google Scholar
[9]
P. Le-Clech, V. Chen, T. A. G. Fang, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci. 284 (2006) 17-53.
DOI: 10.1016/j.memsci.2006.08.019
Google Scholar
[10]
K. Kimura, N. Yamato, H. Yamamura, Y. Watanabe, Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater, Envirion. Sci. Technol. 39 (2005) 6293-6299.
DOI: 10.1021/es0502425
Google Scholar
[11]
B. Q. Liao, Anaerobic membrane bioreactors: applications and research directions, Crit. Rev. Sci. Technol. 36 (2006) 489-530.
Google Scholar
[12]
Marcinkowsky A. E, Kraus K A, Phillips H O, et al. Hyperfiltration studies. IV. Salt rejection by dynamically formed hydrous oxide membranes. Journal of the American Chemical Society, 1966, 88: 5744-5750.
DOI: 10.1021/ja00976a013
Google Scholar
[13]
Vinod T. Kuberlar and Robert H. Davis, Modelling of fouling reduction by secondary membranes, Journal of Membrane Science, vol. 168, pp.243-258, (2000).
Google Scholar
[14]
H. S. Lee, S. J. Park. Wastewater treatment in a hybrid biological reactor using powdered minerals: effects of organic loading rates on COD removal and nitrification [J]. Process Biochemistry, 2003, 38 (1): 81-88.
DOI: 10.1016/s0032-9592(02)00044-4
Google Scholar
[15]
J. Y. Jung, et al. Son. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process [J]. Water Research, 2004, 38 (2): 347-354.
DOI: 10.1016/j.watres.2003.09.025
Google Scholar
[16]
Smith P J, Vigneswaran S, et al. A new approach to backwash initiation in membrane systems. Journal of Membrane Science, 2006, 278: 381-389.
DOI: 10.1016/j.memsci.2005.11.024
Google Scholar
[17]
Remize P J, et al. From a new method to consider backwash efficiency to the definition of remaining fouling. Desalination, 2006, 199: 86-88.
DOI: 10.1016/j.desal.2006.03.148
Google Scholar
[18]
Bourgeous K N, Darby J L, Tchobanoglous G. Ultrafiltration of wastewater: Effects of particles, mode of operation, and backwash effectiveness. Water Research, 2001, 35 (1): 77-90.
DOI: 10.1016/s0043-1354(00)00225-6
Google Scholar
[19]
S. Gao, Z. Y. Zhou, et al. Application of self-forming Biodynamic Membrane in Sludge Retaining. Water Purification. 2005. 24 (01).
Google Scholar
[20]
Kiso. Y, Jung Y J, Ichinari T, et al. Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material. Water Research, 2000, 34 (17): 4143-4150.
DOI: 10.1016/s0043-1354(00)00201-3
Google Scholar
[21]
Remize P J, et al. Form a new method to consider backwash efficiency to the definition of remaining fouling. Desalination, 2006, 199: 86-88.
DOI: 10.1016/j.desal.2006.03.148
Google Scholar
[22]
Bourgeous K N, et al. Ultrafiltration of wastewater: Effects of particles, mode of operation, and backwash effectiveness. Water Research, 2001, 35 (1): 77-90.
DOI: 10.1016/s0043-1354(00)00225-6
Google Scholar
[23]
H. M. Zhang, S. Qiao, et al. Domestic Wastewater Treatment with Precoating Dynamic Membrane Bio-reactor. ACTA Scientiae Circumustantiae. 2005. 25. (2).
Google Scholar
[24]
Al-Malack M H, Anderson G K. Cleaning techniques of dynamic membrane. Separation Purification Technology, 1997, 12 : 25-33.
DOI: 10.1016/s1383-5866(97)00012-9
Google Scholar
[25]
F. Li, J. Li, et al. Application of Dynamic Membrane to Crossflow Microfiltration. Technology of Water Treatment, 2005. 31 (12).
Google Scholar
[26]
J. Zhang, X. F. Qiu, et al. Online Aeration Backwashing in the Inverse DIRECTION OF Effluent Applied in Dynamic Membrane Bio-reactor. Environment Science. 2007. 28 (6).
Google Scholar
[27]
T. Janus, et al, Modelling SMP and EPS formation and degradation kinetics with an extended A3M3 model, Desalination 261 (2010) 117-125.
DOI: 10.1016/j.desal.2010.05.021
Google Scholar