[1]
Y. A. Oktem, O. Ince, P. Sallis, T. Donnelly, B. K. Ince, Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor, Bioresource Technol. vol. 99, 2007, pp.1089-1096.
DOI: 10.1016/j.biortech.2007.02.036
Google Scholar
[2]
X. M. Lang, "Pharmaceutical wastewater treatment with hydrolysis acidifying-UNITANK-BAF process. Ph.D. Thesis, Northeast University, China, 2006, pp.1-12.
Google Scholar
[3]
D. Ashton, M. Hilton, K. V. Thomas, Investigatingthe environmental transport of human pharmaceuticals to streams in the United Kingdom, Sci. Total Environ. Vol. 333, 2004, pp.167-184.
DOI: 10.1016/j.scitotenv.2004.04.062
Google Scholar
[4]
K. Fent, A. A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol. Vol. 76, 2006, pp.122-159.
DOI: 10.1016/j.aquatox.2005.09.009
Google Scholar
[5]
Z. B. Chen, N. Q. Ren, A. J. Wang, Z. P. Zhang, Y. Shui, A novel application of TPAD–MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater, Water Research. Vol. 42, 2008, pp.3385-3392.
DOI: 10.1016/j.watres.2008.04.020
Google Scholar
[6]
M. I. Badawy, R. A. Wahaab, A. S. El-Kalliny, Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater, Journal of Hazardous Materials. Vol. 167, 2009, pp.567-574.
DOI: 10.1016/j.jhazmat.2009.01.023
Google Scholar
[7]
Y. Yang, P. Wang, S. J. Shi, Y. Liu, Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater, Vol. 168, 2009, pp.238-245.
DOI: 10.1016/j.jhazmat.2009.02.038
Google Scholar
[8]
S. M. Ghoreishi, R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chem. Eng. Vol. 95, 2003, pp.163-169.
DOI: 10.1016/s1385-8947(03)00100-1
Google Scholar
[9]
G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez, A. Pollice, C. Salerno, Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment, Bioresource Technology, Vol. 101, 2010, pp.2585-2591.
DOI: 10.1016/j.biortech.2009.10.057
Google Scholar
[10]
S. Chelliapana, T. Wilbyb, P. Sallisa, Performance of an up-flow anaerobic stage reactor(UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics, Water Research, Vol. 40, 2006, pp.507-516.
DOI: 10.1016/j.watres.2005.11.020
Google Scholar
[11]
Y. E. Benkli, M. F. Can, M. Turan, M. S. C¸ elik, Modification of organozeolite surface for the removal of reactive azo dyes in fixed-bed reactors, Water Research. Vol. 39, 2005, pp.487-493.
DOI: 10.1016/j.watres.2004.10.008
Google Scholar
[12]
X. Y. Wei, Z. Wang, F. H. Fan, J. X. Wang, S. H. Wang, Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning, Desalination. Vol. 251, 2010, pp.167-175.
DOI: 10.1016/j.desal.2009.08.005
Google Scholar
[13]
J. C. Garcia, J. L. Oliveira, A. E. C. Silva, C. C. Oliveira, J. Nozaki, N. E. de Souza, Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems, Journal of Hazardous Materials. Vol. 147 2007, pp.105-110.
DOI: 10.1016/j.jhazmat.2006.12.053
Google Scholar
[14]
Chen Guohua. Electrochemical technologies in wastewater treatment, Separation and Purification Techonlogy. Vol. 34, 2004, pp.11-41.
Google Scholar
[15]
D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment, Chem. Technol Biotechnol, Vol. 79, 2004, pp.431-454.
DOI: 10.1002/jctb.1020
Google Scholar