[1]
S.N. Podyachev; N.E. Burmakina; V.V. Syakaev; S.N. Sudakova; R.R. Shagidullin; A.I. Konovalov. Synthesis, IR and NMR characterization and ion extraction properties of tetranonyl- calix.
DOI: 10.1016/j.tet.2008.10.008
Google Scholar
[4]
resorcinol bearing acetylhydrazone groups. Tetrahedron, 2009, 65(1): 408-417.
Google Scholar
[2]
F.M. Ramírez; J-C.G. Bünzli; S. Varbanov; J. Padilla. Physicochemical Properties and Theoretical Modeling of Actinide Complexes with a para-tert-Butylcalix.
Google Scholar
[6]
arene Bearing Phosphinoyl Pendants. Extraction Capability of the Calixarene toward f Elements. Journal of Physical Chemistry B; 2008, 112(35): 10976-10988.
DOI: 10.1021/jp710848m
Google Scholar
[3]
M. Kumar; J.N. Babu;V. Bhalla. Fluorescent chemosensor for Cu2+ ion based on iminoanthryl appended calix.
DOI: 10.1007/s10847-009-9670-2
Google Scholar
[4]
arene. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66 (1/2): 139-145.
Google Scholar
[4]
D.P. Nikolelis; G. Raftopoulou; N. Psaroudakis; G-P. Nikoleli. Development of an electrochemical chemosensor for the rapiddetection of Zinc based on air stable lipid films with incorporated calix.
DOI: 10.1002/elan.200804225
Google Scholar
[4]
arene phosphoryl receptor. International Journal of Environmental Analytical Chemistry, 2009, 89(3): 211-222.
Google Scholar
[5]
X. Wei; J.J. Vittal; R.J. Puddephatt; Anionic calixarene complexes of copper(I) and silver(I) as cation receptors. Inorganic Chemistry; 97, 36(1): 86-94.
DOI: 10.1021/ic960508w
Google Scholar
[6]
P. Kumar; Y-B. Shim. Chromium(III)-selective electrode using p-(4-Acetanilidazo) calix.
Google Scholar
[4]
arene as an ionophore in PVC matrix. Bulletin of The Korean Chemical Society, 2008, 29 (12): 2471-2476.
DOI: 10.5012/bkcs.2008.29.12.2471
Google Scholar
[7]
G. Ozturk; E.U. Akkaya. Differential and substrate-selective reactivity of calix.
Google Scholar
[4]
arene derivatives with cyclenyl-Zn(II) modifications at the upper rim. Organic letters, 2004, 6(2): 241 -243.
DOI: 10.1021/ol0360694
Google Scholar
[8]
W.P. Zhu; J. Ling; H. Xu; Z.Q. Shen. Copolymerization of trimethylene carbonate and 2, 2- dimethyltrimethylene carbonate by rare earth calixarene complexes. Polymer; 2005, 46 (19): 8379 -8385.
DOI: 10.1016/j.polymer.2005.07.007
Google Scholar
[9]
E Hoppe; C. Limberg; , B. Ziemer. Mono- and dinuclear oxovanadium (V) calixarene complexes and their activity as oxidation catalysts. Inorganic Chemistry; 2006, 45 (20): 8308-8317.
DOI: 10.1021/ic061106j
Google Scholar
[10]
R. Cacciapaglia; A. Casnati; L. Mandolini; D.N. Reinhoudt; R. Salvio; A. Sartori; R. Ungaro. Di-and trinuclear arrangements of zinc(II)-1, 5, 9- triazacyclododecane units on the calix.
DOI: 10.1016/j.ica.2006.07.024
Google Scholar
[4]
arene scaffold: Efficiency and substrate selectivity in the catalysis of ester cleavage. Inorganica Chimica Acta: 2007, 360(3): 981-986.
DOI: 10.1016/j.ica.2006.07.024
Google Scholar
[11]
J.M. Notestein; E. Iglesia; A. Katz. Photoluminescence and charge-transfer complexes of calixarenes grafted on TiO2 nanoparticles. Chemistry of Materials; 2007, 19(20): 4998-5005.
DOI: 10.1021/cm070779c
Google Scholar
[12]
I.A. Bagatin; C. Legnani; M. Cremona. Investigation on Al(III) and Zn(II) complexes containing a calix.
Google Scholar
[4]
arene bearing two 8-oxyquinoline pendant arms used as emitting materials for OLEDs. Materials science & engineering. C, Biomimetic and supramolecular systems, 2009, 29(1): 267-270.
DOI: 10.1016/j.msec.2008.06.020
Google Scholar
[13]
R.K. Pathak; Sk. Md. Ibrahim; C.P. Rao; Selective recognition of Zn2+by salicylaldimine appended triazole-linked di-derivatives of calix.
DOI: 10.1016/j.tetlet.2009.03.126
Google Scholar
[4]
arene by enhanced fluorescence emission in aqueous-organic solutions: role of terminal -CH2OH moieties in conjunction with the imine in recognition. Tetrahedron letters, 2009, 50(23): 2730-2734.
DOI: 10.1016/j.tetlet.2009.03.126
Google Scholar
[14]
D. Buccella; G. Parkin. Mononuclear and dinuclear Molybdenum and Tungsten complexes of p-tert-butyl tetrathiacalix.
Google Scholar
[4]
arene and p-tert-butyltetrasulfonylcalix.
Google Scholar
[4]
arene: Facile cleavage of the calixarene ligand framework by Nickel. Journal of the American Chemical Society; 2008, 130(27): 8617-8619.
Google Scholar
[15]
D. Buccefla; G. Parkin. p-tert-butylcalix.
Google Scholar
[4]
arene complexes of Molybdenum and Tungsten: Reactivity of the calixarene methylene C-H bond and the bacile migration of the metal around the phenolic rim of the calixarene. Journal of the American Chemical Society; 2006, 128(50): 16358 -16364.
DOI: 10.1021/ja066457b
Google Scholar
[16]
A.J. Petrella; C.L. Raston. Calixarenes as platforms for the construction of multimetallic complexes. Journal of Organometallic Chemistry; 2004, 689(24): 4125-4136.
DOI: 10.1016/j.jorganchem.2004.07.065
Google Scholar
[17]
B. Valeur; I. Leray. Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes: A review. Inorganica Chimica Acta 2007, 360: 765-774.
DOI: 10.1016/j.ica.2006.07.027
Google Scholar
[18]
N. Kotzen; A. Vigalok. The inside of metal calixarene chemistry. Supramolecular Chemistry, 2008, 20(1-2): 129-139.
DOI: 10.1080/10610270701747057
Google Scholar
[19]
L.H. Liu; L.N. Zakharov; J.A. Golen; A.L. Rheingold; T.A. Hanna. Synthesis and characterization of Bismuth(III) and Antimony(III) calixarene complexes. Inorganic Chemistry; 2008, 47(23): 11143-11153.
DOI: 10.1021/ic801445m
Google Scholar
[20]
G. Karotsis; S. Kennedy; S.J. Dalgarno; E.K. Brechin. Calixarene supported enneanuclear Cu(II) clusters. Chemical Communications. 2010, 46 (22): 3884-3886.
DOI: 10.1039/c0cc00011f
Google Scholar
[21]
Z.X. Xu; Z.T. Huang; C.F. Chen. Synthesis and structures of novel enantiopure inherently chiral calix.
Google Scholar
[4]
arene-derived salphen ligands and their transition-metal complexes. Tetrahedron letters, 2009, 50(38): 5430-5433.
DOI: 10.1016/j.tetlet.2009.07.064
Google Scholar
[22]
D. Cuc; S. Bouguet-Bonnet; N. Morel-Desrosiers; J-P. Morel; P. Mutzenhardt; D. Canet. Location of a Metallic Cation Complexed in a Calixarene Cavity As Determined by Calixarene 13C Spin Relaxation. Application to Cesium and Thallium Complexed by p-Sulfonatocalix.
DOI: 10.1021/jp8067816
Google Scholar
[4]
arene in Water. Journal of Physical Chemistry B; 2009, 113(11): 3499-3503.
Google Scholar
[23]
Y. de Gaetano; I. Clarot; J.B. Regnouf-de-Vains. Cu(I) and Zn(II) chelations on polymer beads modified by attachment of a bipyridyl-calixarene-based chelate. Tetrahedron Letters, 2009, 50(42): 5793-5797.
DOI: 10.1016/j.tetlet.2009.07.131
Google Scholar
[24]
R. Joseph; B. Ramanujam; H. Pal; Lower rim 1, 3-di-amide-derivative of calix.
Google Scholar
[4]
arene possessing bis- {N-(2, 2- dipyridylamide)} pendants: a dual fluorescence sensor for Zn2+and Ni2+. Tetrahedron Letters, 2008, 49(43): 6257-6261.
DOI: 10.1016/j.tetlet.2008.08.049
Google Scholar
[25]
J. Dessingou; R. Joseph; C.P. Rao; A direct fluorescence-on chemo- sensor for selective recognition of Zn(II) by a lower rim 1, 3-di-derivative of calix.
DOI: 10.1016/j.tetlet.2005.09.079
Google Scholar
[4]
arene possessing bis-{N-(2- hydroxynaphthyl-l-methylimine)} pendants. Tetrahedron Letters, 2005, 46(46): 7967-7971.
DOI: 10.1016/j.tetlet.2005.09.079
Google Scholar
[26]
Y. Liu; N. Zhang , B.T. Zhao; H.Y. Zhang. Spectroscopic behavior on the formation complex of three double-armed calix.
Google Scholar
[4]
arene derivatives with lanthanoid nitrates in acetonitrile. Spectro chimica Acta PartA. 2002, 58: 2889-2895.
Google Scholar
[27]
Zhang Xiao-mei; Jiang Hai-ying; Wang Shao-bao. Synthesis and its anti-ultraviolet and anti- oxidation Activity of Calix.
Google Scholar
[4]
arene Derivative Containing Schiff-base Fraction [J]. Journal of Anhui University(Natural Sciences), 2008, 32(2): 70-73.
Google Scholar
[28]
S.N. Rao; K.N. Munshi; N.N. Rao; M.M. Bhadbhade; E. Suresh. Synthesis, spectral and X-rays tructural characterization of [cis-MoO2(L) (solv)] (L=salicylidene salicyloyl hydrazine) and its use as catalytic oxidant. Polyhedron, 1999, 18: 2491-2497.
DOI: 10.1016/s0277-5387(99)00139-4
Google Scholar
[29]
T. Ghosh; B. Mondal; T. Ghosh; M. Sutradhar; G. Mukherjee; M.G.B. Drew. Synthesis, structure, solution chemistry and the electronic effect of para substituents on the vanadium center in a family of mixed-ligand [VVO(ONO)(ON)] complexes. Inorganica Chimica Acta., 2007, 360: 1753 -1761.
DOI: 10.1016/j.ica.2006.10.003
Google Scholar
[30]
P.F. Lee; C.T. Yang; D. Fan; J.J. Vittal; J.D. Ranford. Synthesis, characterization and physicochemical properties of copper II complexes containing salicylaldehyde semicarbazone. Polyhedron, 2003, 22: 2781~2786.
DOI: 10.1016/s0277-5387(03)00402-9
Google Scholar
[31]
X.H. Chen; Q.J. Wu; Z.Y. Liang; C.R. Zhang. Synthesis, Structure, Thermal Stability and Fluorescence of One Binuclear Zn(II) Complex [Zn2(L)2(Mf)2]. Chinese Journal of Inorganic Chemistry, 2009, 25(5): 910-914.
Google Scholar