[1]
D.J. Parrish, D.D. Wolf, W.L. Daniels, Perennial Species for optimum production of herbaceous biomass in the Piedmont. Management study, 1987-1991. ORNL /Sub /5-27413 /7. National Technical Information Service, US Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161, USA, (1993).
DOI: 10.2172/6418430
Google Scholar
[2]
S.B. McLaughlin, R. Samson, D. Bransby, A. Wisselogel, Evaluating physical, chemical and energetic properties of perennial grasses as biofuels, In: Bioenergy ' 96. Proceedings of the Seventh National Bioenergy Conference, Nashville, TN, USA, Sep 15-20, Vol. VI, pp.1-8, (1996).
Google Scholar
[3]
M.A. Sanderson, R.L. Reed, S.B. McLaughlin, et al, Switchgrass as a sustainable bioenergy crop, Bioresource Technology 56, 83-93, (1996).
DOI: 10.1016/0960-8524(95)00176-x
Google Scholar
[4]
S.B. McLaughlin, New switchgrass biofuels research program for the southeast. In Proc. 1992 Annual Automotive Technol. Dev. Contractor's Coordinating Meeting, 2-5 November 1992, Dearborn, MI, pp.111-5, (1993).
Google Scholar
[5]
D.K. Johnson, P.A. Ashley, S.P. Deutch, M. Davis, et al, Compositional variability in herbaceous energy crops, In second biomass conference of the Americas: Energy, Environment, Agriculture, and Industry Proceedings, National Renewable Energy Laboratory, Golden, CO, (1995).
DOI: 10.2172/97159
Google Scholar
[6]
M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, S. Picataggio, Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science 1995, 267, 240-243.
DOI: 10.1126/science.267.5195.240
Google Scholar
[7]
P. McKendry, Energy production from biomass(Part 2): conversion technologies, Bioresource Technology, 2002, 83: 47-54.
DOI: 10.1016/s0960-8524(01)00119-5
Google Scholar
[8]
C.N. Hamelinck, G. Van Hooijdonk, A.P.C. Faaij, Ethanol from lignocellulosic biomass: techno-economic performance in short-middle-, and long-term, Biomass & Bioenergy, 2005, 28: 384-410.
DOI: 10.1016/j.biombioe.2004.09.002
Google Scholar
[9]
Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology, 2002, 83: 1-11.
DOI: 10.1016/s0960-8524(01)00212-7
Google Scholar
[10]
10 A. Guerra, R. Mendonca, A. Ferraz, F. Lu, J. Ralph, Structural characterization of lignin during Pinus taeda wood treatment with ceriporiopsis subvermispora, Applied and Environmental Microbiology, July 2004, 4073-4078.
DOI: 10.1128/aem.70.7.4073-4078.2004
Google Scholar
[11]
K. M. Holtman, H.M. Chang, J.F. Kadla, Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin, J. Agric. Food Chem. 2004, 52: 720-726.
DOI: 10.1021/jf035084k
Google Scholar
[12]
Stephen Y. Lin, Carlton W. Dence, Methods in Lignin Chemistry, Springer- Verlag, New York, 1992, P262-266.
Google Scholar
[13]
T.G. Bridgeman, L.I. Darvell, J.M. Jones, P.T. Williams, R. Fahmi, Influence of particle size on the analytical and chemical properties of two energy crops, Fuel 86 (2007), 60-72.
DOI: 10.1016/j.fuel.2006.06.022
Google Scholar