[1]
Y. Shi, X.T. Zhao, Y.M. Zhang and N.Q. Ren, Back propagation neural network (BPNN) prediction model and control strategies of methanogen phase reactor treating traditional Chinese medicine wastewater (TCMW), Journal of Biotechnology, vol. 144, no. 1, pp.70-74, (2009).
DOI: 10.1016/j.jbiotec.2009.08.014
Google Scholar
[2]
H.Y. Hu, Y.C. Lee, T.M. Yen and C.H. Tsai, Using BPNN and DEMATEL to modify importance–performance analysis model – A study of the computer industry, Expert Systems with Applications, vol. 36, no. 6, pp.9969-9979, (2009).
DOI: 10.1016/j.eswa.2009.01.062
Google Scholar
[3]
W.C. Chen, Y.Y. Hsu, L.F. Hsieh and P.H. Tai, A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN, Expert Systems with Applications, vol. 37, no. 1, pp.716-726, (2010).
DOI: 10.1016/j.eswa.2009.05.098
Google Scholar
[4]
Y.F. Wen, C.Z. Cai, X.H. Liu, J.F. Pei, X.J. Zhu and T. T Xiao, Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression, Corrosion Science vol. 51, pp.349-355, (2009).
DOI: 10.1016/j.corsci.2008.10.038
Google Scholar
[5]
V.N. Vapnik and A.Y. Chervoknekis, Theory of Pattern Recognition, Nauka, Moscow, (1974).
Google Scholar
[6]
V.N. Vapnik, Estimation of Dependencies Based on Empirical Data, NewYork: Sprinfer-Verlag, (1982).
Google Scholar
[7]
V.N. Vapnik, The nature of statistical learning theory, New York: Springer, (1995).
Google Scholar
[8]
C.Z. Cai, L.Y. Han, Z.L. Ji, X. Chen and Y.Z. Chen, SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence, Nucleic Acids Research, vol. 31, pp.3692-3697, (2003).
DOI: 10.1093/nar/gkg600
Google Scholar
[9]
C.Z. Cai, L.Y. Han, Z.L. Ji and Y.Z. Chen, Enzyme family classification by support vector machines, Proteins,vol. 55, pp.66-76, (2004).
DOI: 10.1002/prot.20045
Google Scholar
[10]
S.M. Clarke, J.H. Griebsh and T.W. Simpson, Analysis of support vector regression for approximation of complex engineer analyses, J. Mech. Design, vol. 127, pp.1077-1087, (2005).
DOI: 10.1115/1.1897403
Google Scholar
[11]
D.O. Whiteson and N.A. Naumann, Support vector regression as a signal discriminator in high energy physics, Neurocomputing, vol. 55, pp.251-264, (2003).
DOI: 10.1016/s0925-2312(03)00366-7
Google Scholar
[12]
R. Eberhart and J. Kennedy, A new Optimizer using Particle swarm optimization, Proceedings of The 6th International Symposium on Micro Machine and Human Science, pp.39-43, (1995).
DOI: 10.1109/mhs.1995.494215
Google Scholar
[13]
J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp.1942-1948, (1995).
Google Scholar
[14]
X.L. Liu, S.C. Song, H.G. Shi and F.J. Shang, Prediction of tungsten tensile strength with artificial BP neural network method, Materials Science and Technology, vol. 14, pp.63-65, (2006).
Google Scholar