Modes Excitation by Input Field of Different Positions in Three-Mode Photonic Crystal Waveguides

Article Preview

Abstract:

We investigate modes excitation with input field of different positions in three-mode photonic crystal waveguides. The three-mode photonic crystal waveguides is formed by removing three rows rods in 2D photonic crystals. The input field with different positions can excite different modes due to the field intensity distribution of modes. When the input field locates at the position of the zero field intensity of the waveguide mode, the mode can not be excited. The finite-difference time-domain method is used to obtain the excited field distributions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

45-48

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, Robert D. Meade: Photonic Crystals: molding the flow of light, (Princeton University Press, Princeton, 2008).

Google Scholar

[2] S. Boscolo, M. Midrio, C. G. Someda: IEEE J. Quantum Electron. Vol. 38 (2002), p.47.

Google Scholar

[3] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, M. Mansuripur: J. Lightw. Technol. Vol. 22 (2004), p.2842.

Google Scholar

[4] I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, E. H. Lee, Photonic crystal power-splitter based on directional coupling, Opt. Express Vol. 12 (2004), p.3599.

DOI: 10.1364/opex.12.003599

Google Scholar

[5] H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, S. G. Lee, Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: Application to wavelength de-multiplexing, Opt. Express Vol. 12 (2004), p.5625.

DOI: 10.1364/opex.12.005625

Google Scholar

[6] Y. Zhang, Z. J. Li, and B. J. Li, Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves, Opt. Express Vol. 14 (2006), p.2679.

DOI: 10.1364/oe.14.002679

Google Scholar

[7] H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A Wu, Z. B. Zhang, Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy, Phys. Rev. B Vol. 74 (2006).

DOI: 10.1103/physrevb.74.205111

Google Scholar

[8] D. Modotto, M. Conforti, A. Locatelli, C. D. Angelis, Imaging properties of multimode photonic crystal waveguides and waveguide arrays, J. Lightw. Technol. Vol. 25 (2007), p.402.

DOI: 10.1109/jlt.2006.886681

Google Scholar

[9] T. B. Yu, X. Q. Jiang, J. Y. Yang, H. F. Zhou, Qing-Hua Liao, Ming-Hua Wang, Self-imaging effect of TM modes in photonic crystal multimode waveguides only exhibiting band gaps for TE modes, Phys. Lett. A Vol. 369 (2007), p.167.

DOI: 10.1016/j.physleta.2007.04.078

Google Scholar

[10] A. Taflove, S.C. Hagness: Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, 2000).

Google Scholar