[1]
Meisam K. Habibi, Shailendra P. Joshi, Manoj Gupta. Hierarchical magnesium nano-composites for enhanced mechanical response[J]. Acta Materialia, 2010, 58(18): 6104-6114.
DOI: 10.1016/j.actamat.2010.07.028
Google Scholar
[2]
T. Rodriguez-Suarez, S. Lopez-Esteban, C. Pecharromán, et al. Slow crack growth resistance and bridging stress determination in alumina-rich magnesium aluminate spinel/tungsten composites[J]. Acta Materialia, 2009, 57(7): 2121-2127.
DOI: 10.1016/j.actamat.2009.01.004
Google Scholar
[3]
S.F. Hassan, M. Gupta. Development of high-performance magnesium nano-composites using solidification processing route, Mater. Sci. Technol. 20 (2004) 1383–1388.
DOI: 10.1179/026708304x3980
Google Scholar
[4]
M. Alok Singh, M. Nakamura, A. Watanabe, et al. Quasicrystal strengthened Mg–Zn–Y alloys by extrusion[J]. Scripta Mater. 49 (2003) 417–422.
DOI: 10.1016/s1359-6462(03)00305-1
Google Scholar
[5]
C.S. Goh, J. Wei, L.C. Lee, et al. Variability in the segregation of bismuth between grain boundaries in copper[J]. Acta Mater. 55 (2007) 5115–5121.
Google Scholar
[6]
H. Ferkel, B.L. Mordike. Magnesium strengthened by SiC nanoparticles[J]. Materials Science and Engineering A 298 (2001) 193–199.
DOI: 10.1016/s0921-5093(00)01283-1
Google Scholar
[7]
A.R. Vaidya, J.J. Lewandoowski. Effects of SiCp size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites[J]. Materials Science and Engineering A 220 (1996) 85–92.
DOI: 10.1016/s0921-5093(96)10464-0
Google Scholar
[8]
M. Habibnejad-Korayema, R. Mahmudia, W.J. Poole. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles[J]. Materials Science and Engineering A 519 (2009) 198–203.
DOI: 10.1016/j.msea.2009.05.001
Google Scholar
[9]
Q.B. Nguyena, M. Guptaa, T.S. Srivatsan. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B[J]. Materials Science and Engineering A 500 (2009) 233–237.
DOI: 10.1016/j.msea.2008.09.050
Google Scholar
[10]
Quy Bau Nguyen, Manoj Gupta. Enhancing mechanical response of AZ31B using Cu + nano-Al2O3 addition[J]. Materials Science and Engineering A 527 (2010) 1411-1416.
DOI: 10.1016/j.msea.2009.11.002
Google Scholar
[11]
M. Tabandeh Khorshid, S.A. Jenabali Jahromi, M.M. Moshksar. Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion[J]. Materials & Design, 2010, 31(8): 3880-3884.
DOI: 10.1016/j.matdes.2010.02.047
Google Scholar
[12]
Z. Razavi Hesabi, H.R. Hafizpour, A. Simchi. An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling[J]. Materials Science and Engineering A 454-455 (2007) 89-98.
DOI: 10.1016/j.msea.2006.11.129
Google Scholar
[13]
G. Schmid, C. Eisenmenger-Sittner, J. Hell, M. Horkel, M. Keding, H. Mahr. Optimization of a container design for depositing uniform metal coatings on glass microspheres by magnetron sputtering[J]. Surface and Coatings Technology, 2010, 205(7): 1929-(1936).
DOI: 10.1016/j.surfcoat.2010.08.076
Google Scholar
[14]
Markus Bosund, Timo Sajavaara, Mikko Laitinen, et al. Properties of AlN grown by plasma enhanced atomic layer deposition [J]. Applied Surface Science, 2011, 257: 7827–7830.
DOI: 10.1016/j.apsusc.2011.04.037
Google Scholar
[15]
M. Uzunova-Bujnova, R. Todorovska, M. Milanova, et al. On the spray-drying deposition of TiO2 photocatalytic films [J]. Applied Surface Science, 2009, 256: 830–837.
DOI: 10.1016/j.apsusc.2009.08.069
Google Scholar
[16]
Yanhong Tong, Lin Dong, Yichun Liu, et al. Growth and optical properties of ZnO nanorods by introducing ZnO sols prior to hydrothermal process[J]. Materials Letters, 2007, 61(17): 3578-3581.
DOI: 10.1016/j.matlet.2006.11.125
Google Scholar
[17]
Z.J. Jiang, C.Y. Liu. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere[J]. J. Phys. Chem., B 107 (2003)12411–12415.
DOI: 10.1021/jp035060g
Google Scholar
[18]
Jinhui Dai, Xizhong Liu, Huazhang Zhai, et al. Preparation of Ni-coated Si3N4 powders via electroless plating method [J]. Ceramics International, 2009, 35: 3407–3410.
DOI: 10.1016/j.ceramint.2009.06.007
Google Scholar
[19]
J. Ma, S.M. Jiang, H.Q. Li, et al. Microstructure and oxidation behaviour of an AlSiY/NiCrAlYSi composite coating at 1150 °C[J]. Corrosion Science, 2011, 53(4): 1417-1423.
DOI: 10.1016/j.corsci.2011.01.004
Google Scholar
[20]
S. Ranganatha, T.V. Venkatesha, K. Vathsala. Development of electroless Ni–Zn–P/nano-TiO2 composite coatings and their properties [J]. Applied Surface Science, 2010, 256: 7377–7383.
DOI: 10.1016/j.apsusc.2010.05.076
Google Scholar
[21]
J.N. Balaraju, Kalavati, K.S. Rajam. Electroless ternary Ni–W–P alloys containing micron size Al2O3 particles[J]. Surface & Coatings Technology, 2010, 205: 575– 581.
DOI: 10.1016/j.surfcoat.2010.07.047
Google Scholar
[22]
Sheng-Lung Kuo, Yann-Cheng Chen, Ming-Der Ger, et al. Nano-particles dispersion effect on Ni/ Al2O3 composite coatings[J]. Materials Chemistry and Physics, 2004, 86: 5-10.
DOI: 10.1016/j.matchemphys.2003.11.040
Google Scholar
[23]
Ik-Hyun Oh, Jae-Young Lee, Jae-Kil Han, et al. Microstructural characterization of Al2O3–Ni composites prepared by electroless deposition[J]. Surface & Coatings Technology, 2005, 192: 39– 42.
DOI: 10.1016/j.surfcoat.2004.04.064
Google Scholar
[24]
B.D. Barker. Electroless deposition of metals[J]. Surface & Coatings Technology, 1981, 12(1): 77– 88.
Google Scholar