Solvent-Free Synthesis and Characterization of the Zn(II) Complexes with Amino Acid Schiff Base

Article Preview

Abstract:

Three zinc (II) complexes of the amino acid Schiff base were synthesized by the one step reaction of amino acid with aldehyde, zinc acetate in solvent-free. The compositions and structures of the complexes were characterized by elemental analyses, FTIR, XRD, TG-DSC. The compositions of the complexes are ZnL•nH2O (L = sal-leu, sal-ala, van-leu; sal = salicylaldehyde; van = vanillic aldehyde; leu = leucine; ala = alanine). Infrared spectra of the complexes indicate that the Schiff base ligands are formed, zinc ion is coordinated to the Schiff base ligands as terdentate with O, O and N donors from carboxylic, phenolic and imino groups respectively, the coordination numbers of zinc ion is four. The possible pyrolysis reactions in the thermal decomposition process of the complexes, the experimental and calculated percentage mass loss are also given.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 455-456)

Pages:

740-745

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tsuji and H. Ishikawa, Bioorg. Med. Chem. Lett., 4 (1994) 1601.

Google Scholar

[2] K. J. Wilson, C. R. Illig, N. Subasinghe, J. B. Hoffman, M. J. Rudolph, R. Soll, C. J. Molloy, R. Bone, D. Green, T. Randall, M. Zhang, F. A. Lewandowski, Z. Zhou, C. Sharp, D. Maguire, B. Grasberger, R. L. DesJarlais and J. Spurlino, Bioorg. Med. Chem. Lett., 11 (2001).

DOI: 10.1016/s0960-894x(01)00102-0

Google Scholar

[3] B. Jiang and X. H. Gu, Bioorg. Med. Chem., 8 (2000) 363.

Google Scholar

[4] Y. Kumar, R. Green, D. S. Wise, L. L. Wotring and L. B. Townsend, J. Med. Chem., 36 (1993) 3849.

Google Scholar

[5] E. Medime and G. Capan, II Farmaco, 49 (1994) 449.

Google Scholar

[6] L. D. S. Yadav and S. Singh, Indian J. Chem., 40B (2001) 440.

Google Scholar

[7] S. Naskar, S. Naskar, H. M. Figgie, W. S. Sheldrick and S. K. Chattopadhyay, Polyhedron, 29 (2010) 493.

DOI: 10.1016/j.poly.2009.06.040

Google Scholar

[8] M. S. Nair and R. S. Joseyphus, Spectrochim. Acta Part A, 70 (2008) 749.

Google Scholar

[9] N. M. Hosny and F. I. EI-Dossoki, J. Chem. Eng. Data, 53 (2008) 2567.

Google Scholar

[10] A. García-Raso, J. J. Fiol, A. López-Zafra, I. Mata, E. Espinosa and E. Molins, Polyhedron, 19 (2000) 673.

Google Scholar

[11] C. Maxim, T. D. Pasatoiu, V. Ch. Kravtsov, S. Shova, C. A. Muryn, R. E. P. Winpenny, F. Tuna and M. Andruh, Inorg. Chim. Acta, 361 (2008) 3903.

DOI: 10.1016/j.ica.2008.03.013

Google Scholar

[12] R. K. Ray and G. B. Kauffman, J. Thermal. Anal, 35 (1989) 1603.

Google Scholar

[13] H. L. Singh, Spectrochim. Acta Part A, 76 (2010) 253.

Google Scholar

[14] M. A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, T. Jeyakumar and M. S. Pillai, Spectrochim. Acta Part A, 71 (2008) 1599.

DOI: 10.1016/j.saa.2008.06.008

Google Scholar

[15] P. R. Shukla, V. K. Singh and A. M. Jaiswal, J. Indian Chem. Soc., 60 (1983) 321.

Google Scholar

[16] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed., Wiley, New York, (1986).

Google Scholar

[17] G. Q. Zhong and S. R. Luan, Chinese J. Synth. Chem., 10 (2002) 31.

Google Scholar

[18] S. R. Luan, Y. H. Zhu and Y. Q. Jia, J. Thermal. Anal. Cal., 95 (2009) 951.

Google Scholar

[19] G. Avsar, H. Altinel, M. K. Yilmaz and B. Guzel, J. Thermal. Anal. Cal., 101 (2010) 199.

Google Scholar