[1]
K, Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable lithium batteries, J. Electrochem. Soc, vol. 14, no. 4, pp.1188-1194, April (1997).
DOI: 10.1149/1.1837571
Google Scholar
[2]
Saidi, M.Y., et al., Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries, Electrochem. Solid-state Lett, vol. 5, no. 7, pp. A149-A151, April (2002).
DOI: 10.1149/1.1479295
Google Scholar
[3]
H. Huang. S.C. Yin, T. Kerr, N. Taylor. L.F. Nazar, Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries, Adv. Mater, vol. 14, no. 21, pp.1525-1528, November (2002).
DOI: 10.1002/1521-4095(20021104)14:21<1525::aid-adma1525>3.0.co;2-3
Google Scholar
[4]
S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, Charge Ordering in Lithium Vanadium Phosphates: Electrode Materials for Lithium-Ion Batteries,J. Am. Chem. Soc. vol. 125, No. 2, pp.326-327, December (2003).
DOI: 10.1021/ja028973h
Google Scholar
[5]
S.C. Yin, P.S. Strobel, H. Grondey, L.F. Nazar. Li2. 5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3, Chem. Mater, vol. 16, No. 8, pp.1456-1465, March (2004).
DOI: 10.1002/chin.200427003
Google Scholar
[6]
Subramanian, V., et al., Microwave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithium batteries, J. Mater. Chem, vol. 11, No. 1, pp.3348-3353, October (2001).
Google Scholar
[7]
Yan, H., X. Huang, and L. Chen, Microwave synthesis of LiMn2O4 cathode material, J. Power Sources, vol. 81-82, No. 1, pp.647-650, September (1999).
DOI: 10.1016/s0378-7753(99)00112-3
Google Scholar
[8]
Wang, L., et al., Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating, Electrochimica Acta, vol. 52, No. 24, pp.6778-6783, August (2007).
DOI: 10.1016/j.electacta.2007.04.104
Google Scholar
[9]
Song, M. -S., et al., Amphoteric effects of Fe2P on electrochemical performance of lithium iron phosphate-carbon composite synthesized by ball-milling and microwave heating, J. Power Sources, vol. 180, No. 1, pp.546-552, May (2008).
DOI: 10.1016/j.jpowsour.2008.01.079
Google Scholar
[10]
Beninati, S., L. Damen, and M. Mastragostino, MW-assisted synthesis of LiFePO4 for high power applications. J. Power Sources, vol. 180, No. 2, pp.875-879, June (2008).
DOI: 10.1016/j.jpowsour.2008.02.066
Google Scholar
[11]
Yang, G., et al., Microwave solid-state synthesis and electrochemical properties of carbon-free Li3V2(PO4)3 as cathode materials for lithium batteries. Electrochimica Acta, vol. 55, No. 8, pp.2951-2957, March (2010).
DOI: 10.1016/j.electacta.2009.11.102
Google Scholar
[12]
J-W. Wang, J. Liu, G-L. Yang, et al. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source. Electrochim Acta, vol. 54, No. 26, pp.6451-6454, November (2009).
DOI: 10.1016/j.electacta.2009.05.002
Google Scholar
[13]
L.N. Wang, Z.G. Zhang, K.L. Zhang, A simple, cheap soft synthesi routine for LiFePO4 using iron (Ⅲ) raw material. J. Power Sources, vol. 167, No. 1, pp.200-205, May (2007).
DOI: 10.1016/j.jpowsour.2007.02.002
Google Scholar
[14]
Y.Z. Li, Z. Zhou, M.M. Ren. Improved electrochemical Li insertion performances of Li3V2(PO4)3/carbon composite materials prepared by a sol-gel route, Mater Lett, vol. 61, No. 23-24, pp.4562-4564, September (2007).
DOI: 10.1016/j.matlet.2007.02.057
Google Scholar
[15]
D. Morgan, G. Ceder, M.Y. Saidi. J. Barker, J. Swoyer, H. Huang, G. Adamson, Chem. Mater. vol. 14, No. 11, pp.4684-4689, October (2002).
Google Scholar