Stress and Adhesion Determination of a Wedged Iron Film System by Buckle Morphologies

Article Preview

Abstract:

By using the mobile property of silicone oil, a wedged iron (Fe) film system, deposited on glass substrate, has been prepared by dc-magnetron sputtering technique. The wedged Fe film is quenched by the silicone oil during deposition, and therefore contains a very high compressive stress, which is relieved by formation of a large number of telephone cord buckles. Both the buckle width l and maximum buckle deflection δ increase linearly with the film thickness, but the ratio of δ to l (l/δ ) decreases steadily. The internal stress and adhesion energy are estimated in the frame of continuum elastic theory.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

113-117

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A. Aly, J. Non-Cryst. Solids Vol. 355 (2009), p.1489.

Google Scholar

[2] X. M. Tao, G. X. Ye, Q. L. Ye, J. S. Jin, Y. F. Lao and Z. K. Jiao, Phys. Rev. B Vol. 66 (2002), p.115406.

Google Scholar

[3] J. J. I. Wong, L. Ramirez, A. G. Swartz, A. Hoff, W. Han, Y. Li and R. K. Kawakami, Phys. Rev. B Vol. 81 (2010), p.094406.

Google Scholar

[4] G. X. Ye, Y. Q. Xu, H. L. Ge, Z. K. Jiao and Q. R. Zhang, Phys. Lett. A Vol. 198 (1995), p.251.

Google Scholar

[5] K. Kaneko, R. Nagayama, K. Inoke, W. -J, Moon, Z. Horita, Y. Hayashi and T. Tokunaga, Scripta Mater. Vol. 52 (2005), p.1205.

DOI: 10.1016/j.scriptamat.2005.03.007

Google Scholar

[6] X. M. Tao, C. M. Feng, P. G. Cai, B. Yang and G. X. Ye, Solid State Commun. Vol. 131 (2004), p.419.

Google Scholar

[7] S. B. Iyer, K. S. Harshavardhan and V. Kumar, Thin Solid Films Vol. 256 (1995), p.94.

Google Scholar

[8] P. Goudeau, P. Villain, N. Tamura and H. A. Padmore, Appl. Phys. Lett. Vol. 83 (2003), p.51.

Google Scholar

[9] T. W. Wu, J. Mater. Res. Vol. 6 (1991), p.407.

Google Scholar

[10] A. Lee, C. S. Litteken, R. H. Dauskardt and W. D. Nix, Acta Mater. Vol. 53 (2005), p.609.

Google Scholar

[11] M. D. Kriese, N. R. Moody and W. W. Gerberich, J. Mater. Res. Vol. 14 (1999), p.3007.

Google Scholar

[12] N. Matuda, S. Baba and A. Kinbara, Thin Solid Films Vol. 81 (1981), p.301.

Google Scholar

[13] G. Gille and B. Rau, Thin Solid Films Vol. 120 (1984), p.109.

Google Scholar

[14] A. Pundt, L. Brekerbohm, J. Niehues, P. Wilbrandt and E. Nikitin, Scripta Mater. Vol. 57 (2007), p.889.

DOI: 10.1016/j.scriptamat.2007.05.013

Google Scholar

[15] M. J. Cordill, D. F. Bahr, N. R. Moody and W. W. Gerberich, Mater. Sci. & Eng. A Vol. 443 (2007), p.150.

Google Scholar

[16] C. M. Feng, H. L. Ge, M. R Tang, G. X. Ye and Z. K. Jiao, Thin Solid Films Vol. 342 (1999), p.30.

Google Scholar

[17] Y. J. Zhang, S. J. Yu, P. G. Cai and H. Zhou, Surf. Rev. Lett. Vol. 14 (2007), p.879.

Google Scholar

[18] B. Audoly, Phys. Rev. Lett. Vol. 83 (1999), p.4124. (b).

Google Scholar