Integer-Coded Genetic Algorithm for Trimmed Estimator of Multivariate Linear Errors in Variables Model

Article Preview

Abstract:

The multivariate linear errors-in-variables (EIV) model is frequently used in computer vision for model fitting tasks. As well known, when sample data is contaminated by large numbers of awkwardly placed outliers, the least squares estimator isn’t robust. To obtain robust estimators of multivariate linear EIV model, orthogonal least trimmed square and orthogonal least trimmed absolute deviation estimators based on the subset of h cases(out of n)are proposed. However, these robust estimators possessing the exact fit property are NP-hard to compute. To tackle this problem, an integer-coded genetic algorithm that is applicable to trimmed estimators is presented. The trimmed estimators of multivariate linear EIV model on real data are provided and the results show that the integer-coded genetic algorithm is correct and effective.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

1223-1229

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Matei and P. Meer, A General Method for Errors-in-Variables Problems in Computer Vision, In Proceedings, CVPR 2000, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Vol. 2(2000), p.18 – 25.

DOI: 10.1109/cvpr.2000.854727

Google Scholar

[2] A. Choukroun and V. Charvillat, Bucketing Techniques in Robust Regression for Computer Vision, Lecture Notes in Computer Science, 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June, 2003, Proceedings 2003, Vol2749(2003), p.737–748.

DOI: 10.1007/3-540-45103-x_81

Google Scholar

[3] M.L. Brown, Robust line estimation with errors in both variables, Journal of the American Statistical Association. Vol. 77(1982), pp.71-79.

DOI: 10.1080/01621459.1982.10477768

Google Scholar

[4] R.H. Zamar, Robust estimation in the errors-in-variables model, Biometrika. Vol. 76(1989), p.149–160.

DOI: 10.1093/biomet/76.1.149

Google Scholar

[5] R.H. Zamar, Bias robust estimation in the orthogonal regression, The annals of statistics. Vol. 20(1992), p.1875–1888.

DOI: 10.1214/aos/1176348893

Google Scholar

[6] M. Fekri and A. Ruiz-Gazen, Robust weighted orthogonal regression in the errors-in-variables model, Journal of Multivariate Analysis. Vol. 88(2004), pp.89-108.

DOI: 10.1016/s0047-259x(03)00057-5

Google Scholar

[7] Croux , M. Fekri and A. Ruiz-Gazen, Fast and robust estimation of the multivariate errors in variables model, TEST . Vol. 19(2009), pp.286-303.

DOI: 10.1007/s11749-009-0155-9

Google Scholar

[8] T. Hu and H.J. Cui, t-type estimators for a class of linear errors-in-variables models, Statistica Sinica . Vol. 19(2009), pp.1013-1036.

Google Scholar

[9] C. Croux and G. Haesbroeck. Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies, Biometrika. Vol. 87(2000), pp.603-618.

DOI: 10.1093/biomet/87.3.603

Google Scholar

[10] Y. Dodge. Statistical data analysis based on the L1-norm and related methods, Boston, Basel, Berlin: Birkhäuser, 2002, pp.109-123.

Google Scholar

[11] I. Wegener, in: Complexity Theory, Springer, Berlin Heidelberg, (2005).

Google Scholar

[12] J. van der Geer, J.A.J. Hanraads, R.A. Lupton, The art of writing a scientific article, J. Sci. Commun. 163 (2000) 51-59.

Google Scholar

[13] S. Chatterjeea, M. Laudatoa and L. A. Lynchb, Genetic algorithms and their statistical applications: an introduction, Computational Statistics & Data Analysis, Vol. 22(1996), pp.633-651.

Google Scholar

[14] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outliers Detection, John Wiley and Son(1987).

Google Scholar