[1]
J.L. Deng, Introduction Grey system theory, Journal Grey System. 1(1)(1989)pp.1-24.
Google Scholar
[2]
G. Eason, B. Noble, and I. N. Sneddon, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Phil. Trans. Roy. Soc. London, vol. A247, p.529–551, April 1955. (references) S.F. Liu, Y. Lin, Grey Information: Theory and Practical Applications, Springer-Verlag London Ltd. London, (2005).
DOI: 10.1098/rsta.1955.0005
Google Scholar
[3]
Y.N. Wang, K.D. Liu, Y.C. Li, GM(1, 1) modelling method of optimum the whiting values of grey derivative, Syst. Eng. Theory Practice. 21(05)(2001)pp.124-128.
Google Scholar
[4]
B. Li, Y. Wei, Optimizes grey derivative of GM(1, 1), Syst. Eng. Theory Practice. 29(2)(2009)pp.100-105.
Google Scholar
[5]
Y.N. Wang, An exended step by step optimum direct modelling method of GM(1, 1), syst. Eng. Theory Practice. 21(05)(2003)pp.120-124.
Google Scholar
[6]
N.M. Xie, S.F. Liu, Discrete grey forecasting model and its optimization, Applied Mathematical Modelling. 33(2)(2009) pp.1173-1186.
DOI: 10.1016/j.apm.2008.01.011
Google Scholar
[7]
G.J. Tan, The structure method and application of background value in grey system GM(1, 1) model, Syst. Eng. Theory Practice. 20(04)(2000), pp.98-103.
Google Scholar
[8]
Z.X. Wang, Y.G. Dang, S.F. Liu, Optimization of background value in GM(1, 1) model, Syst. Eng. Theory Practice. (28)2(2008)pp.61-67.
Google Scholar
[9]
T.L. Tien, A new grey prediction model FGM(1, 1), Mathematical and Computer Modelling. 49(7-8), (2009)pp.1416-1426.
DOI: 10.1016/j.mcm.2008.11.015
Google Scholar
[10]
T.L. Tien, The deterministic grey dynamic model with convolution integral DGDMC(1, n), Applied Mathematical Modelling. 33(2009) pp.3498-3510.
DOI: 10.1016/j.apm.2008.11.012
Google Scholar
[11]
C.H. Wang, L.C. Hsu, Using genetic algorithms grey theory to forecast high technology industrial output, Applied Mathematics and Computation. 195(2008). pp.256-263.
DOI: 10.1016/j.amc.2007.04.080
Google Scholar
[12]
L.C. Hsu, Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models, Expert Systems with applications. 36(4)(2009)pp.7898-7903.
DOI: 10.1016/j.eswa.2008.11.004
Google Scholar
[13]
J.Z. Zhou, R.C. Fang, Y.H. Li, Y.C. Zhang, B. Peng, (2008). Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization, Applied Mathematics and Computation. 207(2)(15), 2009, pp.292-299.
DOI: 10.1016/j.amc.2008.10.045
Google Scholar
[14]
T.X. Yao, S. f. Liu, N.M. Xie, On the properties of small sample of GM(1, 1) model, Applied Mathematical Modelling. 33(4)(2009)p.1894-(1903).
DOI: 10.1016/j.apm.2008.03.017
Google Scholar
[15]
Brayton, R. K, S.W. Director, G.D. Hachtel, L. Vidigal, A new algorithm for statistical circuit design based on Quasi-Newton methods and function splitting, IEEE Trans. Circuits and systems. CAS-26, (1979), pp.784-794.
DOI: 10.1109/tcs.1979.1084701
Google Scholar
[16]
Grace, A.C. W, Computer-aided control system design using optimization techniques, Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK. (1989).
Google Scholar
[17]
Han, S. P, A globally convergent method For nonlinear programming, Journal of Optimization Theory and Applications, 22, (1977), p.297.
Google Scholar
[18]
Madsen. K, H. Schjaer-Jacobsen, Algorithms for worst case tolerance optimization, IEEE Transactions of Circuits and Systems, CAS-26, (1979).
DOI: 10.1109/tcs.1979.1084700
Google Scholar
[19]
Powell, M.J. D, A fast algorithm for nonlineary constrained optimization calculations, Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag, (630)(1978).
Google Scholar
[20]
F. Ye, H.W. Liu, S.S. Zhou, S.Y. Liu, A smoothing trust-region Newton-CG method for minimax problem, Applied Mathematics and Computation. 199(2)1, (2008)pp.581-589.
DOI: 10.1016/j.amc.2007.10.070
Google Scholar
[21]
D.D. Wu, Y.D. Zhang, D.X. Wu, D.L. Olson, Fuzzy multi-objective programming for supplier selection and risk modelling: A possibility approach, European Journal of Operational Research. (in press).
DOI: 10.1016/j.ejor.2009.01.026
Google Scholar
[22]
W. ki N,B. Gou, The e_cient and economic design of PEM fuel cell systems by multi-objective optimization, Journal of Power Sources. 166, (2)(15)(2007), pp.411-418.
DOI: 10.1016/j.jpowsour.2007.01.022
Google Scholar
[23]
X.F. Wang, SQP algorithms in balancing rotating machinery, Mechanical Systems and Signal processing. 21(3)(2007) pp.1469-1478.
DOI: 10.1016/j.ymssp.2006.06.003
Google Scholar
[24]
Serdar Kucuk, Zafer Bingul, Comparative study of performance indices for fundamental robot manipulators, Robotics and Autonomous Systems. 54, (7)31(2006), pp.567-573.
DOI: 10.1016/j.robot.2006.04.002
Google Scholar
[25]
Coleman, M.A. Branch,A. Grace, Optimization toolbo-x for use with MATLAB, The Math-Works nc. (2006).
Google Scholar
[26]
D. Jukic,G. Kralik, R. Scitovski, Least-squares _tting Gompertz curve, Journal of Computational and Applied Mathematics, 169(2004)pp.359-375.
DOI: 10.1016/j.cam.2003.12.030
Google Scholar