Effect of Electric Current Pulse on Carbide in Hypereutectic High Chromium Cast Iron

Article Preview

Abstract:

It has significant engineering practicability that refining the carbides as hard phase in hypereutectic high chromium cast iron. The high chromium cast iron samples during the course of solidification were treated with electric current pulse (ECP) from the temperature of 1350 °C and 1360 °C. The effects of ECP treatment of starting temperature, processing time on the shape, size, and distribution of primary carbides was investigated. The mechanism of primary carbides refined by ECP process was also analyzed preliminarily.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

174-180

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Bedolla-Jacuinde, R, Correa, J. G. Quezada, C, Maldonado, Effect of titanium on the as-cast microstructure of a 16% chromium white iron , materials science and engineering A 398 (2005) 297-308.

DOI: 10.1016/j.msea.2005.03.072

Google Scholar

[2] T. A. Adler, O. N. Dogan, Erosive wear and impact damage of high-chromium white cast irons, Wear229 (1999) 174-180.

DOI: 10.1016/s0043-1648(99)00010-1

Google Scholar

[3] O. N. Dogan, J. A. Hawk, G. Laird, Solidification structure and abrasion resistance of high chromium white irons, Metallurgical and materials Transactions A-physical Metallurgy and Materials Science 28 (1997) 1315-1328.

DOI: 10.1007/s11661-997-0267-3

Google Scholar

[4] S. D. Carpenter, D. Carpenter, J. T. H. Pearce, XRD and electron microscope study of an as-cast 26. 6% chromium white iron microstructure, Materials Chemistry and Physics 85 (2004) 32-40.

DOI: 10.1016/j.matchemphys.2003.11.037

Google Scholar

[5] A. Wiengmoon, T. Chairuangsri, A. Brown, R. Bryson, D. V. Edmonds, J. T. H. Pearce, Microstructural and crystallographical study of carbides in 30wt%Cr cast irons , Acta materialia 53 (2005) 4143-4154.

DOI: 10.1016/j.actamat.2005.05.019

Google Scholar

[6] Lucien NB, Richard NG. Mater Sci Eng A 1997; 238: 176.

Google Scholar

[7] Li. F, Regel L. L, Wilcox WR. J Cryst Growth 2001; 223: 251.

Google Scholar

[8] He SX, Wang JB, Sun D. Tras Nonferrous Met Soc China 2002; 12: 414.

Google Scholar

[9] Conrad H. Mater Sci Eng A 2000; 287: 205.

Google Scholar

[10] Gao M, He GH, Yang F. Mater Sci Eng A 2002; 337: 110.

Google Scholar

[11] Fan JH, Li RX, Zhai QJ. Foundry Technol 2003; 24: 534 (in Chinese).

Google Scholar

[12] Nakada M, Shiohara Y, Flemings MC. ISIJ Int 1990; 30: 27.

Google Scholar

[13] Zheng LL, Larson Jr DJ. J Cryst Growth 1996; 167: 277.

Google Scholar

[14] Corre S, Duffar T, Bernard M, Espezel M. J Cryst Growth1997; 180: 604).

Google Scholar

[15] D. H. Matheson, M. Wargo, S. Motakef, D. Carlson, J. Nakos, A. Witt, J. Crystal Growth 85 (1987) 557.

DOI: 10.1016/0022-0248(87)90492-1

Google Scholar

[16] Xiliang. Liao, Qijie. Zhai e. t Acta Materiallia 55 (2007) 3103-3109.

Google Scholar