Ethanol Steam Reforming over La2O2CO3 Supported Ni-Ru Bimetallic Catalysts

Article Preview

Abstract:

A series of Ni-Ru bimetallic catalysts over La2O2CO3 are prepared by an impregnation method. The catalytic properties are evaluated in ethanol steam reforming reaction from 350 to 700 °C under atmospheric pressure. Ni-Ru/La2O2CO3 containing 6 wt% Ni and 3 wt% Ru is found to be more efficient, and Ni-La composite oxide could be formed in the catalyst. Ru is more active in the ethanol dehydration reaction to form ethylene than Ni. The presence of Ru could improve the selectivity for hydrogen of Ni catalyst. TG results reveal that Ni-Ru/La2O2CO3 has excellent resistance to carbon deposition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

314-319

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Chem. Commun. (2001), p.851.

Google Scholar

[2] A.N. Fatsikostas, X.E. Verykios, J. Catal. Vol. 225 (2004), p.439.

Google Scholar

[3] A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios, Catal. Today. Vol. 75 (2002), p.145.

Google Scholar

[4] M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Int.J. Hydrogen Energy. Vol. 32 (2007), p.1462.

Google Scholar

[5] J. Kugai, V. Subramani, C. Song, M.H. Engelhard, Y. -H. Chin, J. Catal. Vol. 238 (2006), p.430.

Google Scholar

[6] J. Kugai, S. Velu, C. Song, Catal. Lett. Vol. 101 (2005), p.255.

Google Scholar

[7] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Appl. Catal. B: Environ. Vol. 43 (2003), p.345.

Google Scholar

[8] D.C. Grenoble, M.M. Estadt, D.F. Ollis, J. Catal. Vol. 67 (1981), p.90.

Google Scholar

[9] R. Brown, M.E. Cooper, D.A. Whan, Appl. Catal. Vol. 3 (1982), p.177.

Google Scholar

[10] C. Crisafulli, S. Scire, R. Maggiore, S. Minico, S. Galvagno, Catal. Lett. Vol. 59 (1999), p.21.

Google Scholar

[11] C. Crisafulli, S. Scirè, S. Minicò, L. Solarino, Appl. Catal. B: Gen. Vol. 225 (2002), p.1.

Google Scholar

[12] J.M. Rynkowski, T. Paryjczak, M. Lenik, Appl. Catal. B: Gen. Vol. 126 (1995), p.257.

Google Scholar

[13] G.R. Gallaher, J.G. Goodwin, C.S. Huang, M. Houalla, J. Catal. Vol. 140 (1993), p.453.

Google Scholar

[14] B. Faroldi, C. Carrara, E.A. Lombardo, L.M. Cornaglia, Appl. Catal. B: Gen. Vol. 319 (2007), p.38.

Google Scholar

[15] S. Lacombe, C. Geantet, C. Mirodatos, J. Catal. Vol. 151 (1995), p.439.

Google Scholar

[16] X. Yide, Y. Lin, G. Xiexian, Appl. Catal. B: Gen. Vol. 164 (1997), p.47.

Google Scholar

[17] C.P. LI, A. Proctor, D.M. Hercules, Appl. Spectrosc. Vol. 38 (1984), p.880.

Google Scholar

[18] D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood, Electrochim. Acta. Vol. 48 (2003), p.4245.

Google Scholar

[19] C. Elmasides, D.I. Kondarides, W. Grunert, X.E. Verykios, J. Phys. Chem. B. Vol. 103 (1999), p.5227.

Google Scholar

[20] J. Sun, X. -P. Qiu, F. Wu, W. -T. Zhu, Int.J. Hydrogen Energy. Vol. 30 (2005), p.437.

Google Scholar

[21] Y. Yang, J. Ma, F. Wu, Int.J. Hydrogen Energy. Vol. 31 (2006), p.877.

Google Scholar

[22] N. Laosiripojana, S. Assabumrungrat, Appl. Catal. B: Environ. Vol. 66 (2006), p.29.

Google Scholar