Enhanced Electrochemical Hydrogen Storage Characteristics of the as-Spun Mg2Ni-Type Alloys by Substituting Ni with M (M=Cu, Co)

Article Preview

Abstract:

Mg2Ni-type Mg20Ni10-xMx (M=Cu, Co; x=0, 1, 2, 3, 4) electrode alloys with nanocrystalline and amorphous structure were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by XRD, SEM and HRTEM. The electrochemical hydrogen storage properties of the experimental alloys were measured. The obtained results show that the as-spun (M=Cu) alloys hold an entire nanocrystalline structure, whereas the as-spun (M=Co) alloys display a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy. Furthermore, such substitution results in the formation of secondary phases Mg2Cu and MgCo2 instead of changing the major phase of Mg2Ni. The substitution of M (M=Cu, Co) for Ni markedly improves the electrochemical performances of the alloys, involving the discharge capacity and the cycle stability as well as the high rate discharge ability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

572-577

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.N. Kwon, S.H. Baek, D.R. Mummb, S.H. Hong, M.Y. Song: Int. J. Hydrogen Energy Vol. 33 (2008), p.4586.

Google Scholar

[2] P. Palade, S. Sartori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti: J. Alloys Compd. Vol. 415 (2006), p.170.

DOI: 10.1016/j.jallcom.2005.08.017

Google Scholar

[3] M.Y. Song, S.N. Kwon, J.S. Bae and S.H. Hong: Int. J. Hydrogen Energy Vol. 33 (2008), p.1711.

Google Scholar

[4] M. Savyak, S. Hirnyj, H. -D. Bauer, M. Uhlemann, J. Eckert, L. Schultz and A. Gebert: J. Alloys Compd. Vol. 364 (2004), p.229.

DOI: 10.1016/s0925-8388(03)00529-2

Google Scholar

[5] L.J. Huang, G.Y. Liang, Z.B. Sun, D.C. Wu: J. Power Sources Vol. 160 (2006), p.684.

Google Scholar

[6] T. Spassov, U. Köster: J. Alloys Compd. Vol. 279 (1998), p.279.

Google Scholar

[7] Y.H. Zhang, X.P. Dong, S.H. Guo, G.Q. Wang, J.Y. Ren, X.L. Wang: Int. J. Hydrogen Energy Vol. 31 (2006), p.63.

Google Scholar

[8] M.V. Simičić, M. Zdujić, R. Dimitrijević, Lj. Nikolić-Bujanović, N.H. Popović: J. Power Sources Vol. 158 (2006), p.730.

DOI: 10.1016/j.jpowsour.2005.09.030

Google Scholar

[9] A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk: J. Alloys Compd. Vol. 364 (2004), p.283.

DOI: 10.1016/s0925-8388(03)00544-9

Google Scholar

[10] G. Zheng, B.N. Popov, R.E. White: J. Electrochem. Soc Vol. 142 (1995), p.2695.

Google Scholar