Changes in Three Dimensional Magnetic Fields of Carbon Tool Steel (JIS-SKS93) under Single Spherical Hertzian Contact

Article Preview

Abstract:

Failure of dies and molds is caused by wear and deformation during the metal sheet forming process. Die wear takes various forms, and the contact conditions in die-parts affect the strength of the components. Non-destructive methods that can be related to contact conditions are necessary to study and understand the phenomena caused by the contact stresses. In the present work, a newly developed scanning Hall probe microscope (SHPM) equipped with a GaAs film sensor was used to observe the three-dimensional magnetic fields in tool steel plates before and after contact tests at room temperature in air. It was found that the intensity of three-dimensional magnetic fields is only slightly affected by the spherical Hertzian contact. However, all of the three-dimensional components of the magnetic fields change significantly. The extent of the changes depends not on the distribution of stress under spherical Hertzian contact but on the initial distribution of the magnetic fields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

578-585

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Martin and K. H. Wickramasinghe, Appl Phys Lett, 50, pp.1455-1457 (1987).

Google Scholar

[2] Y. Martin, D. Rugar and K.H. Wickramasinghe, Appl Phys Lett, 52, pp.244-246 (1988).

Google Scholar

[3] L. N. Vu, M. S. Wistrom, and D. J. Vanharkingen, Physica B, 194, p.1791 (1994).

Google Scholar

[4] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton and S. J. Wind, Appl Phys Lett, 66, p.1138 (1995).

DOI: 10.1063/1.113838

Google Scholar

[5] K. A. Moler, J. R. Kirtley, R. Liang, D. Bonn and W. H. Hardy, Phys Rev B, 55, p.12753 (1997).

Google Scholar

[6] S. T. Yamamoto and S. Shultz, Appl Phys Lett, 69, p.3263 (1996).

Google Scholar

[7] M. Nakamura, M. Kimura, K. Sueoka and K. Mukasa, Appl Phys Lett, 80, pp.2713-2715 (2002).

Google Scholar

[8] A. M. Chang, H. D. Hallen, L. Harriot, H. F. Hess, H. L. Loa, J. Kao, R. E. Miller and T. Y. Chang, Appl Phys Lett, 61, p.1974, (1992).

Google Scholar

[9] A. Oral, S. J. Bending and M. Henini, J. Vac. Sci. Technol. B, 14, pp.1202-1205 (1996).

Google Scholar

[10] G. D. Howells, A. Oral, S. J. Bending, S. R. Andrews, P. T. Squire, P. Rice, A. de Lozanne, J. A. C. Bland, I. Kaya and M. Henini, J. Magnetism and Magnetic Materials, 196-197, pp.917-919 (1999).

DOI: 10.1016/s0304-8853(98)01002-6

Google Scholar

[11] A. Sandhu, H. Masuda, A. Oral, S. J. Bending, A. Yamada and M. Konagai, Ultromicroscopy, 91, pp.97-101 (2002).

Google Scholar

[12] A. Sandhu, N. Iida, H. Masuda, A. Oral and S. J. Bending, Magnetism and Magnetic Materials, 242-245, pp.1249-1252 (2002).

Google Scholar

[13] A. Sandhu, A. Okamoto, I. Shibasaki and A. Oral, Microelectronic Engineering, 73-74, pp.524-528 (2004).

Google Scholar

[14] Z. Primadani, H. Osawa and A. Sandhu, Journal of Applied Physics, 101, p. 09K105 -3 (2007).

Google Scholar

[15] M. Dede, K. Ürkmen, Ö. Girisen, M. Atabak, A. Oral, I. Farrer and D. Ritchie, Journal of Nanoscience and Nanotechnology, 8, pp.619-622 (2008).

DOI: 10.1166/jnn.2008.a265

Google Scholar

[16] A. Sandhu, H. Masuda, H. Senoguchi and K. Togawa, Nanotechnology, 15, pp. S410-S413 (2004).

Google Scholar

[17] A. Sandhu, K. Kurosawa, M. Dede and A. Oral, Japanese Journal of Applied Physics, 43, pp.777-778 (2004).

Google Scholar

[18] A. Sandhu, H. Masuda, and A. Oral, Journal of Applied Physics, 41, pp. L1402-L1405 (2002).

Google Scholar

[19] K.Kida, H. Okano and H. Tanabe, Fatigue & Fracture of Engineering Materials & Structures, Blackwell, 32,3, pp.180-188 (2009).

DOI: 10.1111/j.1460-2695.2008.01307.x

Google Scholar

[20] K. Kida, E. C. Santos, T. Honda, H. Koike and J. Rozwadowska, Int. Jour. Fatigue (2011, in press).

DOI: 10.1016/j.ijfatigue.2011.05.013

Google Scholar

[21] K. Kida, K, Santos, E. C., Honda, T. Honda and H. Tanabe, Proc. of SPIE-The International Society for Optical, 7522,SPIE 7522-307 (2010).

Google Scholar

[22] T. Honda, K. Kida , E. C. Santos, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials Journal, 83, pp.210-215 (2011)

DOI: 10.4028/www.scientific.net/AMM.83.210

Google Scholar

[23] T. Honda, K. Kida, E. C. Santos and H. Tanabe, Proc. of SPIE-The International Society for Optical,7522,SPIE 7522-313 (2010).

Google Scholar

[24] K. Kida, E. C. Santos, T. Honda, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials Journal, 83, pp.230-236 (2011).

DOI: 10.4028/www.scientific.net/AMM.83.230

Google Scholar

[25] M. Uryu, K. Kida, T. Honda, E. C. Santos. and K. Saruwatari, Advanced Materials Research, 217-218, pp.1297-1302 (2011).

DOI: 10.4028/www.scientific.net/amr.217-218.1297

Google Scholar

[26] H. Tanabe, K. Kida, T. Takamatsu, N. Itoh and E.C. Santos, Procedia Engineering, 10, pp.881-886 ( 2011)

DOI: 10.1016/j.proeng.2011.04.145

Google Scholar

[27] K. Kida, T. Honda, E. C. Santos, K. Saruwatari, M. Uryu, K. Houri and K. Kanemasu, Advanced Materials Research, 255 - 260, pp.4186-4192. (2011).

DOI: 10.4028/www.scientific.net/AMR.255-260.4186

Google Scholar