On Robust Stability for Stochastic Neural Networks of Neutral-Type with Uncertainties and Time-Varying Delays

Article Preview

Abstract:

This paper is concerned with the robust stability analysis problem for stochastic neural networks of neutral-type with uncertainties and time-varying delays. Novel stability criteria are proposed in terms of linear matrix inequality (LMI) by defining a Lyapunov-Krasovskii functional and using the stochastic analysis technique. Two examples are given to show the effectiveness of the obtained conditions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 457-458)

Pages:

716-722

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Tsai, Applying an artificial neural network to pattern recognition in fabric defects, Textile Research Journal, vol. 65, no. 3, pp.123-130, (1995).

DOI: 10.1177/004051759506500301

Google Scholar

[2] D. Psaltis, C. Park and J. Hong, Higher order associative memories and their optical implementations, Neural Networks, vol. 1, no. 2, pp.149-163, (1988).

DOI: 10.1016/0893-6080(88)90017-2

Google Scholar

[3] A. Cochocki, R. Unbehauen, Neural networks for optimization and signal processing, New York U.S. A: John Wiley & Sons, Inc., (1993).

Google Scholar

[4] A. Baraldi and F. Parmiggiani, A neural network for unsupervised categorization of multivalued input patterns: an application to satellite image clustering, Geoscience and Remote Sensing, IEEE Transactions on, vol. 33, no. 2, pp.305-316, (2002).

DOI: 10.1109/36.377930

Google Scholar

[5] Y. He, Q. -G. Wang and W. -X. Zheng, Global robust stability for delayed neural networks with polytopic type uncertainties, Chaos, Solitons & Fractals, vol. 26, no. 5, pp.1349-1354, (2005).

DOI: 10.1016/j.chaos.2005.04.005

Google Scholar

[6] J. D. Cao, H. X. Li and L. Han, Novel results concerning global robust stability of delayed neural networks, Nonlinear Anal-Real, vol. 7, no. 3, pp.458-469, (2006).

DOI: 10.1016/j.nonrwa.2005.03.012

Google Scholar

[7] W. Wu and B. T. Cui, Global robust exponential stability of delayed neural networks, Chaos Soliton Fract, vol. 35, no. 4, pp.747-754, (2008).

DOI: 10.1016/j.chaos.2006.05.096

Google Scholar

[8] L. P. Li and L. H. Huang, Global asymptotic stability of delayed neural networks with discontinuous neuron activations, Neurocomputing, vol. 72, no. 16-18, pp.3726-3733, (2009).

DOI: 10.1016/j.neucom.2009.05.016

Google Scholar

[9] K. Liu and H. Zhang, An improved global exponential stability criterion for delayed neural networks, Nonlinear Analysis: Real World Applications, vol. 10, no. 4, pp.2613-2619, (2009).

DOI: 10.1016/j.nonrwa.2008.04.011

Google Scholar

[10] J. Shen, J. Wan and C. D. Li, New stability criteria for delayed neural networks with impulses, International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 1, pp.113-117, (2009).

DOI: 10.1515/ijnsns.2009.10.1.113

Google Scholar

[11] J. Qiu and J. Cao, Delay-dependent robust stability of neutral-type neural networks with time delays, Journal of Mathematical Control Science and Applications, vol. 1, no. 1, pp.179-188, (2007).

Google Scholar

[12] J. H. Park, O. M. Kwon and S. M. Lee, Lmi optimization approach on stability for delayed neural networks of neutral-type, Appl Math Comput, vol. 196, no. 1, pp.236-244, (2008).

DOI: 10.1016/j.amc.2007.05.047

Google Scholar

[13] J. H. Park and O. M. Kwon, Further results on state estimation for neural networks of neutral-type with time-varying delay, Appl Math Comput, vol. 208, no. 1, pp.69-75, (2009).

DOI: 10.1016/j.amc.2008.11.017

Google Scholar

[14] J. H. Park and O. M. Kwon, Global stability for neural networks of neutral-type with interval time-varying delays, Chaos Soliton Fract, vol. 41, no. 3, pp.1174-1181, (2009).

DOI: 10.1016/j.chaos.2008.04.049

Google Scholar

[15] S. M. Lee, O. M. Kwon and J. H. Park, A novel delay-dependent criterion for delayed neural networks of neutral type, Physics Letters A, vol. 374, no. 17-18, pp.1843-1848, (2010).

DOI: 10.1016/j.physleta.2010.02.043

Google Scholar

[16] L. Q. Zhou and G.D. Hu, lmost sure exponential stability of neutral stochastic delayed cellular neural networks, Journal of Control Theory and Applications, pp.195-200, (2008).

DOI: 10.1007/s11768-008-7036-8

Google Scholar

[17] W. W. Su and Y. M. Chen n, Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays, Commun Nonlinear Sci, vol. 14, no. 4, pp.1576-1581, (2009).

DOI: 10.1016/j.cnsns.2008.04.001

Google Scholar

[18] H. B. Chen, Y. Zhang and P. Hu, Novel delay-dependent robust stability criteria for neutral stochastic delayed neural networks, Neurocomputing, vol. 73, no. 13-15, pp.2554-2561, (2010).

DOI: 10.1016/j.neucom.2010.06.003

Google Scholar

[19] Q. T. Gan and R. Xu, Global robust exponential stability of uncertain neutral high-order stochastic hopfield neural networks with time-varying delays, Neural Process Lett, vol. 32, no. 1, pp.83-96, (2010).

DOI: 10.1007/s11063-010-9146-9

Google Scholar