[1]
B. Chow, The Yamabe Flow on Locally Conformally Flat Manifolds with Positive Ricci Curvature. Comm. Pure Appl. Math. vol. XLV, pp.1003-1014, (1992).
DOI: 10.1002/cpa.3160450805
Google Scholar
[2]
R.G. Ye, Global Existence and Convergence of Yamabe Flow. J. Diff. Geom. vol 39, 35-50, (1994).
Google Scholar
[3]
N. Sesum, Curvature Tensor under the Ricci flow. arXiv: math/0311397v2[math. DG].
Google Scholar
[4]
G. Perelman, The Entropy Formula for the Ricci Flow and its Geometric Applications, http: /arxiv. org/abs/math/0211159.
Google Scholar
[5]
H.L. Gu, Manifolds with Pointwise Ricci Pinched Curvature, arXiv: 0707. 0034v1 [math. DG].
Google Scholar
[6]
D. Glickenstein, Precompactness of solutions to the Ricci flow in the absence of injectivity radius estimates, Geometry and Topology, 487C510, (2003).
DOI: 10.2140/gt.2003.7.487
Google Scholar
[7]
R. Hamilton, A Compactness Property for Solutions of the Ricci flow, Amer.J. Math., vol 117, 545-572, (1995).
Google Scholar
[8]
B. Chow,P. Lu,L. Ni, Hamilton's Ricci Flow, Lectures in Contemporary Mathematics 3. (2005).
Google Scholar
[9]
H.D. Cao, X.P. Zhu, A Complete Proof of the Poincare and Geometrization Conjectures-Application of the Hamilton-Perelman Theory of the Ricci Flow. Asian J. Math. Vol 10, No 2, pp.165-492, 2006. 7.
DOI: 10.4310/ajm.2006.v10.n2.a2
Google Scholar
[10]
B. Kleiner, J. Lott, Notes on Perelman's papers, arXiv: math/0605667v3[math. DG].
Google Scholar