Investigation of the Twinning Mode in a Compressed Mg-10Gd-2Y-0.5Zr Alloy Assisted by Rietveld Refinement

Article Preview

Abstract:

This paper investigated the twinning mode in a homogenized Mg-10Gd-2Y-0.5Zr ingot compressed at 300 oC and 1 s-1 using transmission electron microscopy observation and schematic method. Details about the primary twinning mode was studied based on the minimum sear criterion by comparing the values of the four major twinning modes in the magnesium alloys. The results show that the twins are formed first by {10-11} primary twinning being step characteristics, and then the secondary twins are formed later around the step by {10-12}secondary twinning. The results also show that the XRD Rietveld refinement method is an effective means to obtain the lattice parameter and to calculate the twinning shear that has important effect on the primary twinning mode in a h.c.p alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-61

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Christian and S. Mahajan: Progress in Materials Science Vol. 39 (1995), p.1.

Google Scholar

[2] M.H. Yoo: Metal. Mater. Trans. A Vol. 12 (1981), p.409.

Google Scholar

[3] M.R. Barnett, Z. Keshavarz, A.G. Beer and X. Ma: Acta Materialia Vol. 56 (2008), p.5.

Google Scholar

[4] L. Jiang and J.J. Jonas: Scripta Materialia Vol. 58 (2008), p.803.

Google Scholar

[5] Y.N. Wang and J.C. Huang: Acta Materialia Vol. 55 (2007), p.897.

Google Scholar

[6] R.E. Reed-Hill: Trans. Metall. Soc. AIME Vol. 218 (1960), p.554.

Google Scholar

[7] X.L. Wu, K.M. Youssef, C.C. Koch, S.N. Mathaudhu, L.J. Kecskes and Y.T. Zhu: Scripta Materialia Vol. 64 (2011), p.213.

Google Scholar

[8] D. Ando, J. Koike and Y. Sutou: Acta Materialia Vol. 58 (2010), p.4316.

Google Scholar

[9] L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev and S. Godet: Scripta Materialia Vol. 54 (2006), p.771.

Google Scholar

[10] S. Kleiner and P.J. Uggowitzer, Mater. Sci. Eng. A. Vol. 379 (2004), p.258.

Google Scholar

[11] P. Yang, F.E. Cui, J.H. Bian and G. Gottstein: Trans. Nonferrous. Met. Soc. China Vol. 13 (2003), p.280.

Google Scholar

[12] M. Bevis and A.G. Crocker: Proceedings of the Royal Society of London A Vol. 304 (1968), p.123.

Google Scholar

[13] B.A. Bilby and A.G. Crocker: Proceedings of the Royal Society of London A Vol. 288 (1965), p.240.

Google Scholar

[14] M.A. Jaswon and D.B. Dove: Acta Crystallo. Vol. 13 (1960), p.232.

Google Scholar

[15] M.H. Yoo: J. Mater. Research Vol. 4 (1989), p.50.

Google Scholar

[16] M.M. Avedisian and H. Baker: ASM specialty handbook: Magnesium and magnesium alloys, ASM, (1999).

Google Scholar

[17] S.H. Park, S. -G. Hong and C.S. Lee: Scripta Materialia Vol. 62 (2010), p.202.

Google Scholar

[18] B. Li and E. Ma: Acta Materialia Vol. 57 (2009), p.1734.

Google Scholar

[19] Y.D. Zhang, Z.B. Li, C. Esling, J. Muller, X. Zhao and L. Zuo: J. Appl. Crystallogr. Vol. 43 (2010), p.1426.

Google Scholar