Analysis of Silicon-On-Insulator (SOI) Buried Waveguide Phase Modulator

Article Preview

Abstract:

The analyses of the simulation of a single mode buried waveguide optical phase modulator based on SOI material are here reported. The structure has been simulated by Athena from Silvaco simulation package. The buried waveguide is created by doping phosphorus with concentration of 10e15 cm-3 into the substrate. The real refractive index and the absorption coefficient of the waveguide are changed using the free carrier dispersion effect via carrier injection of a pn junction. The efficiency, VπLπ is calculated and the performance is compared with that of the rib waveguide optical phase modulator of the same material and dimensions. Simulation shows that the device can be an efficient device for application in intensity modulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-535

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Reed and A. Knights, in: Silicon Photonics, Wiley Online Library (2005).

Google Scholar

[2] G. Lifante, in: Integrated photonics: fundamentals, Wiley (2003).

Google Scholar

[3] F. Gan and F. Kartner: Photonics Technology Letters, IEEE, Vol. 17 (2005) pp.1007-1009.

Google Scholar

[4] Q. Xu, B. Scmidt, S. Pradhan, M. Lipson: Nature Vol. 435 (20015) pp.325-327.

Google Scholar

[5] P. Hewitt and G. Reed: Journal of Lightwave Technology Vol. 18 (2002) pp.443-450.

Google Scholar

[6] P. Hewitt and G. Reed: Journal of Lightwave Technology Vol. 19 (2002) pp.387-390.

Google Scholar

[7] C. Barrios, V. de Almeida, M. Lipson: Journal of Lightwave Technology Vol. 21 (2003) pp.1089-1098.

Google Scholar

[8] D. Marris-Morini, L. Vivien, J. Fedeli, E. Cassan, P. Lyan, S. Laval: Optics Express Vol. 16 (2008) pp.334-339.

DOI: 10.1364/oe.16.000334

Google Scholar

[9] W. Green, M. Rooks, L. Sekaric, Y. Vlasov: Optics Express Vol. 15 (2007) pp.17106-17113.

Google Scholar

[10] S. Gevorgyan : Electronics Letters Vol. 26 (1990) pp.38-39.

Google Scholar

[11] R. Won: Nature Photonics Vol. 5 (2011) p.74.

Google Scholar

[12] A. Bettiol, S. Venugopal Rao, T. Sum, J. Van Kan, F. Watt: Journal of crystal growth Vol. 288 (2006) pp.209-212.

DOI: 10.1016/j.jcrysgro.2005.12.053

Google Scholar

[13] A. S. Holmes, R.R.A. Syms, M. Li, M. Green: Applied optics, Vol. 32 (1993) pp.4916-4921.

Google Scholar

[14] Y. Bourbin, A. Enard, R. Blondeau, M. Razeghi, D. Rondi, M. Papuchon, B. De Cremoux: Electronics Letters Vol. 24 (1988) pp.221-223.

DOI: 10.1049/el:19880148

Google Scholar

[15] A. Bettiol, S.V. Rao, E. Teo, J. Van Kan, F. Watt: Applied Physics Letters Vol. 88 (2006) p.171106.

Google Scholar

[16] A. Roberts and M. Von Bibra Vol. 14 (1996) pp.2554-2557.

Google Scholar

[17] A. Hanim, B. Mardiana, H. Hazura, S. Shaari: ICP 2010 pp.1-3.

Google Scholar

[18] B. Mardiana, H. Hazura, A. Hanim, S. Shaari, H. Abdullah: ICP 2010 pp.1-3.

Google Scholar