Morphology Evolution and Luminescence Properties of YF3: Sm Nano-/Microcrystals

Article Preview

Abstract:

Abstract. Recently, there has been increasting interest in the doping of nano-/microcrystal hosts with Sm3+. However, very few examples of Sm3+ doped YF3 -based nanophosphors have been reported. In this paper, a variety of uniform YF3:Sm nano-/microcrystals have been successfully prepared by a facile, effective, and environmentally friendly hydrothermal method. The morphology evolution process has been investigated by quenching the reaction at different time. Based on the results, a possible growth mechanism is presented in detail. The as-obtained YF3:Sm nano-/microcrystals show strong yellow and red light emissions under room temperature, which is quite different from those reported previously and might find potential applications in fields such as light phosphor powers and advanced flat panel display devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

112-118

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wang, and Y. D. Li: Angew. Chem. Int. Ed Vol. 42 (2003), p.3497.

Google Scholar

[2] X. Wang, J. Zhuang, Q. Peng, and Y. D. Li: Nature Vol. 437 (2005), p.121.

Google Scholar

[3] M. Wang, Q. L. Huang, H. X. Zhong, X. T. Chen, Z. L. Xue, and X. Z. You: Cryst. Growth Des Vol. 7 (2007), p.2106.

Google Scholar

[4] C. X. Li, J. Yang, P. P. Yang, H. Z. Lian, and J. Lin: Chem. Mater Vol. 20 (2008), p.4317.

Google Scholar

[5] M. F. Zhang, H. Fan, B. J. Xi, X. Y. Wang, C. Dong and Y. T. Qian: J. Phys. Chem. C Vol. 111 (2007), p.6652.

Google Scholar

[6] J. L. Lemyre and A. M. Ritcey: Chem. Mater Vol. 17 (2005), p.3040.

Google Scholar

[7] M. Wang, Q. L. Huang, J. M. Hong and X. T. Chen: Mater. Lett Vol. 61 (2007), p. (1960).

Google Scholar

[8] L. W. Qian, J. T. Zai, Z. Chen, J. Zhu, Y. P. Yuan and X. F. Qian: CrystEngComm Vol. 12 (2010), p.199.

Google Scholar

[9] S. Wang, S. Y Song, R. P. Deng, H. L Guo, Y. Q. Lei, F. Cao, X. Y. Li, S. Q. Su and H. J. Zhang: CrystEngComm Vol. 12 (2010), p.3537.

Google Scholar

[10] F. Guo, H. Li, Z. Zhang, S. Meng and D. Li: Mater. Sci. Eng. B Vol. 163 (2009), p.134.

Google Scholar

[11] G. Y. Li, Y. H. Ni, J. M. Hong and K. M. Liao: CrystEngComm Vol. 10 (2008), p.1681.

Google Scholar

[12] N. O. Nunez, M. Quintanilla and E. Cantelar: J. Nanopart. Res Vol. 12 (2010), p.2553.

Google Scholar

[13] L. Y. Wang, Y. Zhang and Y. Y. Zhu: Nano Research Vol. 3 (2010), p.317.

Google Scholar

[14] G. F. Wang, W.P. Qin and J.S. Zhang: J. Phys. Chem. C Vol. 112 (2008), p.12161.

Google Scholar

[15] C. Y. Cao, W. P Qin and J. S. Zhang: J. Fluorine. Chem Vol. 129 (2008), p.204.

Google Scholar

[16] J. M. Meijer, L. Aarts and B. M Ende: Phys. Rev. B Vol. 81 (2010), p.035107.

Google Scholar

[17] L. Aarts, B. M. Ende and M. F. Reid: Spectrosc. Lett Vol. 43 (2010), p.373.

Google Scholar

[18] R. X. Yan and Y. D. Li: Adv. Funct. Mater Vol. 15 (2005), p.763.

Google Scholar

[19] F. Tao, Z. J. Wang, L. Z. Yao, W. L. Cai and X. G. Li: Cryst. Growth. Des Vol. 7 (2007), p.854.

Google Scholar

[20] Y. Chang and H. C. Zeng: Cryst. Growth Des Vol. 4 (2004), p.273.

Google Scholar

[21] H. G. Yang and H. C. Zeng: Angew. Chem. Int. Et Vol. 43 (2004), p.5930.

Google Scholar

[22] F. Tao, F. Pan, Z. J. Wang, W. L. Cai, and L. Z. Yao: ChemEngComm Vol. 12 (2010), p.4263.

Google Scholar