Microstructure and Tensile Properties of Forged High Nb Containing Tial Alloy on Large Scale

Article Preview

Abstract:

Microstructure and tensile properties of canned forged Ti-45Al-(8-9)Nb-(W,B,Y) (at.%) were investigated. After canned forging at (α + γ) phase region, microstructure in the major part of the pancake was fully recrystallized duplex (DP) microstructure containing equiaxed γ grains and fine α2/γ lamellar colonies with a grain size of less than 30μm, while microstructure in the near surface zone was a mixture of fine-grained DP and retained cast structure. Due to solidification segregation, β (B2) phase existed at the grain boundaries and triple junctions. The alloy exhibited a good balance between both room temperature (RT) and high temperatures tensile properties, and the brittle-to-ductile transition temperature was about 760 °C. The fracture mode was predominantly transgranular fracture at both RT and high temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

102-106

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Tetsui: Intermetallics Vol. 10 (2002) p.239.

Google Scholar

[2] C.T. Yang, C.H. Koo: Intermetallics Vol. 12 (2004) p.235.

Google Scholar

[3] G. Chen, W. Zhang, Y. Wang, G. Wang and Z. Sun, in: Structural Intermetallics 1993, edited by R. Darolia, J. J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle and M.V. Nathal, Warrendale, PA, TMS Publishers (1993) p.319.

Google Scholar

[4] G.L. Chen, W.J. Zhang, Z. C. Liu, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Dorolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, Warrendale, PA, TMS Publishers (1997) p.371.

Google Scholar

[5] Z.C. Liu, J.P. Lin, S.J. Li and G.L. Chen: Intermetallics Vol. 10 (2001) p.653.

Google Scholar

[6] W.J. Zhang, G.L. Chen, F. Apple, T.J. Nieh and S.C. Deevi: Mater Sci Eng A Vol. 315 (2001): 250.

Google Scholar

[7] S.L. Semiatin, V. Seetharaman and I. Weiss: Mater Sci Eng A Vol. 243 (1998) p.1.

Google Scholar

[8] T.T. Cheng: Intermetallics Vol. 8 (2002) p.29.

Google Scholar

[9] Q. Xu, M.C. Chaturvedi, N.L. Richards and N. Goel, in: Structural Intermetallics 1997, edited by M.V. Nathal, R. Dorolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner and M. Yamaguchi, Warrendale, PA, TMS Publishers (1997) p.323.

Google Scholar

[10] G.E. Fuchs: Metall Mater Tran A Vol. 28 (1997) p.2543.

Google Scholar

[11] P.J. Maziasz and C.L. Liu: Metall Trans A Vol. 29 (1998) p.105.

Google Scholar

[12] H. Inui, M.H. Oh, A. Nakamura and M. Yamaguchi: Acta Metall Vol. 40 (1992) p.3095.

Google Scholar

[13] H.A. Lipsitt, D. Shechtman and R.E. Schafrik: Metall Trans A Vol. 6 (1975) p. (1991).

Google Scholar

[14] M.R. Shagiev, O.N. Senkov, G.A. Salishchev and F.H. Froes: Journal of Alloys and Compounds Vol. 313 (2000) p.201.

Google Scholar