Aspects of Lag's 5-Dof a Biped Robot Stabilization

Article Preview

Abstract:

This paper aims to present special issues concerning the analysis of mobile robots with kinematic motion effects on the stability study. In the analysis, the authors used inverse kinematics, which enables rapid modeling and identifying solutions as regards the stability of bipedal robots. The symbolic solution for kinematics equations of biped robots is of great importance for the efficient controllability of these robots.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1193-1196

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Christine a, P. Philippe b and E. Bernard c, Artificial locomotion control: from human to robots, aCNRS DPA P3M, 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France, bLIRMM, 161 rue Ada, 34392 Montpellier Cedex 05, France, cINRIA Rhˆone-Alpes, 655 avenue de l'Europe, 38334 St Ismier Cedex, France, Robotics and Autonomous Systems vol 47 (2004).

DOI: 10.3934/cpaa.2012.11.173

Google Scholar

[2] Cs. Z., Mate and L. Cristea, Aspecte of biped robot stabilization, Computer Science and Information Technology, Optimization of the Robots and Manipulators, vol. 8 (2011) pp.164-169.

Google Scholar

[3] O. Jimmy , A hybrid CPG_ZMP control system for stable walking of a simulated flexiblespine humanoid robot, Neural Networks vol 23 (2010), pp.452-460.

DOI: 10.1016/j.neunet.2009.11.003

Google Scholar

[4] Peiman Naseradin Mousavi, Ahmad Bagheri, Mathematical simulation of a seven link biped robot on various surfaces and ZMP considerations, Department of Mechanical Engineering, Guilan University, Rasht, Iran, Applied Mathematical Modelling 31 (2007).

DOI: 10.1016/j.apm.2006.06.018

Google Scholar

[5] P. N. Mousavia , C. Natarajb , A. Bagheria ,M. A. Entezaric, Mathematical simulation of combined trajectory paths of a seven link biped robot, aDepartment of Mechanical Engineering, Guilan University, Rasht, Iran, bDepartment of Mechanical Engineering, Villanova University, Villanova, USA, c Department of Mechanical Engineering, Amir Kabir University, Tehran, Iran , Applied Mathematical Modelling vol 32 (2008).

DOI: 10.52547/mme.22.4.265

Google Scholar

[6] V. Zoltán, Automatizált eszközök, Budapesti Műszaki Főiskola, Budapest, 2002. Június.

Google Scholar

[7] Y. Nakamura a, b, T. Moria, M. Satoc and S. Ishiia, Reinforcement learning for a biped robot based on a CPG-actor-critic method, aNara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan, b Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japa, c ATR Computational Neuroscience Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan, Neural Networks vol. 20 (2007).

DOI: 10.20965/jaciii.2017.p1111

Google Scholar