Design Consideration of Bio-Inspired Contractible Water-Jet Propulsor for Mini Autonomous Underwater Robot

Article Preview

Abstract:

The main aim of this paper is to discuss the general design considerations for contractible water-jet propulsion system for mini underwater robot locomotion. The motivation of this paper is the problems that occurred to the motorized turbine blade propeller for a lower than centimeter scale underwater robot. Contractile water-jet propulsion mechanism is proposed to counter the turbine blade problem. In this research, active materials had been proposed as the actuator for the contractile function. The integration of active material structure and passive structure caused significant consequence on the kinematic and dynamic of the robot. This including the dimension variation, stress distribution as well as contraction force which affects the hydrodynamic efficiency of the propulsion. Several essential design considerations were highlighted and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

1583-1588

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Husaini, Z. Samad, and M. R. Arshad: Optimum Design of URRG-AUV Propeller Using PVL, USYS (2008).

Google Scholar

[2] K. Muggeridge and M. Hinchey: A New Jet propulsion Device for Small Subsea Robot, Underwater Autonomous Vehicle, (1992), pp.112-115.

DOI: 10.1109/auv.1992.225185

Google Scholar

[3] K. Shariff and a Leonard: Vortex Rings, Annual Review of Fluid Mechanics, vol. 24, no. 1, (1992) pp.235-279.

DOI: 10.1146/annurev.fl.24.010192.001315

Google Scholar

[4] P. F. Linden and J. S. Turner: Optimal, vortex rings and aquatic propulsion mechanisms, Proceedings. Biological sciences / The Royal Society, vol. 271, no. 1539, (2004) pp.647-53.

DOI: 10.1098/rspb.2003.2601

Google Scholar

[5] P. S. Krueger and M. Gharib: The significance of vortex ring formation to the impulse and thrust of a starting jet, Physics of Fluids, vol. 15, no. 5 (2003) p.1271.

DOI: 10.1063/1.1564600

Google Scholar

[6] J. O. Dabiri and M. Gharib: Starting flow through nozzles with temporally variable exit diameter, Journal of Fluid Mechanics, vol. 538, no. 1 (2005) p.111.

DOI: 10.1017/s002211200500515x

Google Scholar

[7] J. J. Allen and B. Auvity: Interaction of a vortex ring with a piston vortex, Journal of Fluid Mechanics, vol. 465 (2002) pp.353-378.

DOI: 10.1017/s0022112002001118

Google Scholar

[8] G. Krishnan and K. Mohseni: An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet, European Journal of Mechanics B / Fluids, vol. 29, no. 4 (2010) pp.269-277.

DOI: 10.1016/j.euromechflu.2010.03.001

Google Scholar

[9] A. P. Thomas, M. Milano, M. G. G. Sell, K. Fischer, and J. Burdick: Synthetic Jet Propulsion for Small Underwater Vehicles, IEEE Int. Conf. of Robotics and Automation, (2005) pp.181-187.

DOI: 10.1109/robot.2005.1570116

Google Scholar

[10] X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus and X. Zhou: An Autonomous Robotic Fish for Mobile Sensing, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (2006) pp.5424-5429.

DOI: 10.1109/iros.2006.282110

Google Scholar

[11] B. Kim: Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film, Proceedings of SPIE, (2003) pp.486-495.

DOI: 10.1117/12.484296

Google Scholar

[12] K. Takagi, M. Yamamura, Z.W. Luo, M. Onishi, S. Hirano, K. Asaka, Y. Hayakawa: Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (2006) pp.1867-1866.

DOI: 10.1109/iros.2006.282308

Google Scholar

[13] J.M. Gosline and M.E. DeMont: Jet Propelled swimming in squids, Science America, vol 252 (1985) pp.96-103.

DOI: 10.1038/scientificamerican0185-96

Google Scholar

[14] W. B. Gladfelter: Structure and function of the locomotory system of Polyorchis montereyensis (Cnidaria, Hydrozoa), Helgoländer Wissenschaftliche Meeresuntersuchungen, vol. 23, no. 1 (1972) pp.38-79.

DOI: 10.1007/bf01616310

Google Scholar

[15] T. Mirfakhrai, J. Madden, and R. Baughman: Polymer artificial muscles, Materials Today, vol. 10, no. 4 (2007) pp.30-38.

DOI: 10.1016/s1369-7021(07)70048-2

Google Scholar

[16] Y. Bar-Cohen: Challenges to the application of IPMC as actuators of planetary mechanisms, Proceedings of SPIE, no. 3987 (2000) pp.140-146.

Google Scholar

[17] Guest Editorial: Introduction to the Focused Section on Advanced Intelligent Mechatronics, IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4 (2006) pp.369-371.

DOI: 10.1109/tmech.2006.878559

Google Scholar

[18] Y. Wang, Z. Wang and J. Li: Initial Design of a Biomimetic Cuttlefish Robot Actuated by SMA Wires, 3rd Int. Conf. on Measuring Technology and Mechatronics Automation, (2011) pp.425-428.

DOI: 10.1109/icmtma.2011.393

Google Scholar

[19] B. Akle, J. Najem, D. Leo, and J. Blottman: Design and development of bio-inspired underwater jellyfish like robot using ionic polymer metal composite (IPMC) actuators, Polymer, vol. 7976 (2011) pp.797624-11.

DOI: 10.1117/12.881993

Google Scholar

[20] S.W. Yeom and I.K. Oh: A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Smart Materials and Structures, vol. 18, no. 8 (2009) p.085002.

DOI: 10.1088/0964-1726/18/8/085002

Google Scholar

[21] L. Shi, S. Guo, and K. Asaka: A Novel Jellyfish-like Biomimetic Microrobot, Review Literature And Arts Of The Americas, vol. 2 (2010), pp.277-281.

Google Scholar

[22] M. A. Nicosia and J. G. Brasseur: A Mathematical Model for Estimating Muscle Tension in vivo during Esophageal Bolus Transport, J. Theor. Biol., vol. 219 (2002), p.235–255.

DOI: 10.1006/jtbi.2002.3118

Google Scholar

[23] P. S. Krueger, A. A. Moslemi, J. T. Nichols, I. K. Bartol, and W. J. Stewart: Vortex Rings in Bio-inspired and Biological Jet Propulsion, Adv. in Sciences and Tech., vol. 58 (2008), pp.237-246.

Google Scholar

[24] J. O. Dabiri and M. Gharib: The role of optimal vortex formation in biological fluid transport, Proceedings. Biological sciences / The Royal Society, vol. 272, no. 1572 (2005) pp.1557-60.

DOI: 10.1098/rspb.2005.3109

Google Scholar

[25] J. O. Dabiri: Optimal Vortex Formation as a Unifying Principle in Biological Propulsion, Annual Review of Fluid Mechanics, vol. 41, no. 1 (2009) pp.17-33.

DOI: 10.1146/annurev.fluid.010908.165232

Google Scholar

[26] E. J. Anderson and M. A. Grosenbaugh: Jet flow in steadily swimming adult squid, The Journal of Experimental Biology, vol. 208, no. 6 (2005) pp.1125-46.

DOI: 10.1242/jeb.01507

Google Scholar

[27] I. K. Bartol, P. S. Krueger, W. J. Stewart, and J. T. Thompson: Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet modes, and their implications for propulsive efficiency, The Journal of Experimental Biology, vol. 212, no. 12 (2009).

DOI: 10.1242/jeb.027771

Google Scholar