[1]
M. Husaini, Z. Samad, and M. R. Arshad: Optimum Design of URRG-AUV Propeller Using PVL, USYS (2008).
Google Scholar
[2]
K. Muggeridge and M. Hinchey: A New Jet propulsion Device for Small Subsea Robot, Underwater Autonomous Vehicle, (1992), pp.112-115.
DOI: 10.1109/auv.1992.225185
Google Scholar
[3]
K. Shariff and a Leonard: Vortex Rings, Annual Review of Fluid Mechanics, vol. 24, no. 1, (1992) pp.235-279.
DOI: 10.1146/annurev.fl.24.010192.001315
Google Scholar
[4]
P. F. Linden and J. S. Turner: Optimal, vortex rings and aquatic propulsion mechanisms, Proceedings. Biological sciences / The Royal Society, vol. 271, no. 1539, (2004) pp.647-53.
DOI: 10.1098/rspb.2003.2601
Google Scholar
[5]
P. S. Krueger and M. Gharib: The significance of vortex ring formation to the impulse and thrust of a starting jet, Physics of Fluids, vol. 15, no. 5 (2003) p.1271.
DOI: 10.1063/1.1564600
Google Scholar
[6]
J. O. Dabiri and M. Gharib: Starting flow through nozzles with temporally variable exit diameter, Journal of Fluid Mechanics, vol. 538, no. 1 (2005) p.111.
DOI: 10.1017/s002211200500515x
Google Scholar
[7]
J. J. Allen and B. Auvity: Interaction of a vortex ring with a piston vortex, Journal of Fluid Mechanics, vol. 465 (2002) pp.353-378.
DOI: 10.1017/s0022112002001118
Google Scholar
[8]
G. Krishnan and K. Mohseni: An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet, European Journal of Mechanics B / Fluids, vol. 29, no. 4 (2010) pp.269-277.
DOI: 10.1016/j.euromechflu.2010.03.001
Google Scholar
[9]
A. P. Thomas, M. Milano, M. G. G. Sell, K. Fischer, and J. Burdick: Synthetic Jet Propulsion for Small Underwater Vehicles, IEEE Int. Conf. of Robotics and Automation, (2005) pp.181-187.
DOI: 10.1109/robot.2005.1570116
Google Scholar
[10]
X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus and X. Zhou: An Autonomous Robotic Fish for Mobile Sensing, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (2006) pp.5424-5429.
DOI: 10.1109/iros.2006.282110
Google Scholar
[11]
B. Kim: Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film, Proceedings of SPIE, (2003) pp.486-495.
DOI: 10.1117/12.484296
Google Scholar
[12]
K. Takagi, M. Yamamura, Z.W. Luo, M. Onishi, S. Hirano, K. Asaka, Y. Hayakawa: Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, (2006) pp.1867-1866.
DOI: 10.1109/iros.2006.282308
Google Scholar
[13]
J.M. Gosline and M.E. DeMont: Jet Propelled swimming in squids, Science America, vol 252 (1985) pp.96-103.
DOI: 10.1038/scientificamerican0185-96
Google Scholar
[14]
W. B. Gladfelter: Structure and function of the locomotory system of Polyorchis montereyensis (Cnidaria, Hydrozoa), Helgoländer Wissenschaftliche Meeresuntersuchungen, vol. 23, no. 1 (1972) pp.38-79.
DOI: 10.1007/bf01616310
Google Scholar
[15]
T. Mirfakhrai, J. Madden, and R. Baughman: Polymer artificial muscles, Materials Today, vol. 10, no. 4 (2007) pp.30-38.
DOI: 10.1016/s1369-7021(07)70048-2
Google Scholar
[16]
Y. Bar-Cohen: Challenges to the application of IPMC as actuators of planetary mechanisms, Proceedings of SPIE, no. 3987 (2000) pp.140-146.
Google Scholar
[17]
Guest Editorial: Introduction to the Focused Section on Advanced Intelligent Mechatronics, IEEE/ASME Transactions on Mechatronics, vol. 11, no. 4 (2006) pp.369-371.
DOI: 10.1109/tmech.2006.878559
Google Scholar
[18]
Y. Wang, Z. Wang and J. Li: Initial Design of a Biomimetic Cuttlefish Robot Actuated by SMA Wires, 3rd Int. Conf. on Measuring Technology and Mechatronics Automation, (2011) pp.425-428.
DOI: 10.1109/icmtma.2011.393
Google Scholar
[19]
B. Akle, J. Najem, D. Leo, and J. Blottman: Design and development of bio-inspired underwater jellyfish like robot using ionic polymer metal composite (IPMC) actuators, Polymer, vol. 7976 (2011) pp.797624-11.
DOI: 10.1117/12.881993
Google Scholar
[20]
S.W. Yeom and I.K. Oh: A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Smart Materials and Structures, vol. 18, no. 8 (2009) p.085002.
DOI: 10.1088/0964-1726/18/8/085002
Google Scholar
[21]
L. Shi, S. Guo, and K. Asaka: A Novel Jellyfish-like Biomimetic Microrobot, Review Literature And Arts Of The Americas, vol. 2 (2010), pp.277-281.
Google Scholar
[22]
M. A. Nicosia and J. G. Brasseur: A Mathematical Model for Estimating Muscle Tension in vivo during Esophageal Bolus Transport, J. Theor. Biol., vol. 219 (2002), p.235–255.
DOI: 10.1006/jtbi.2002.3118
Google Scholar
[23]
P. S. Krueger, A. A. Moslemi, J. T. Nichols, I. K. Bartol, and W. J. Stewart: Vortex Rings in Bio-inspired and Biological Jet Propulsion, Adv. in Sciences and Tech., vol. 58 (2008), pp.237-246.
Google Scholar
[24]
J. O. Dabiri and M. Gharib: The role of optimal vortex formation in biological fluid transport, Proceedings. Biological sciences / The Royal Society, vol. 272, no. 1572 (2005) pp.1557-60.
DOI: 10.1098/rspb.2005.3109
Google Scholar
[25]
J. O. Dabiri: Optimal Vortex Formation as a Unifying Principle in Biological Propulsion, Annual Review of Fluid Mechanics, vol. 41, no. 1 (2009) pp.17-33.
DOI: 10.1146/annurev.fluid.010908.165232
Google Scholar
[26]
E. J. Anderson and M. A. Grosenbaugh: Jet flow in steadily swimming adult squid, The Journal of Experimental Biology, vol. 208, no. 6 (2005) pp.1125-46.
DOI: 10.1242/jeb.01507
Google Scholar
[27]
I. K. Bartol, P. S. Krueger, W. J. Stewart, and J. T. Thompson: Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet modes, and their implications for propulsive efficiency, The Journal of Experimental Biology, vol. 212, no. 12 (2009).
DOI: 10.1242/jeb.027771
Google Scholar