Dielectric Properties of Barium Titanate Ceramics Modified by CuO in Different Methods

Article Preview

Abstract:

CuO has been doped solely and together with BaO and SiO2 into barium titanate by mixing and calcination. X-ray diffraction showed that the sample doped by CuO-BaO has stable second hexagonal phase while the samples doped by CuO, CuO-SiO2 were of a pure perovskite phase. For CuO-BaO doping, the Curie temperature was decreased accompanied with higher εmax; while for CuO doping and CuO-SiO2 codoping, the Curie temperature was increased with εmax decreased. The difference can be explained considering that Cu2+ ion could not only incorporate into the BaTiO3 lattice, but also assemble in the boundary phase when CuO was doped solely. Besides, the mechanisms of CuO doping and SiO2 doping could happen at one time.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

276-280

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.L. Brutchey, G.S. Cheng, Q. Gu, et al: Adv. Mater. Vol. 20 (2008), p.1029.

Google Scholar

[2] K.S. Katti, M.X. Qian, F. Dogan, et al: J. Am. Ceram. Soc. Vol. 85 (2002), No. 9, p.2236.

Google Scholar

[3] M. Ceh, V. Krasevec, D. Kolar, et al: Mater. Sci. Forum Vol. 94-96 (1992), p.885.

Google Scholar

[4] J.S. Park, Y.H. Han: Mater. Sci. Forum Vol. 124-126 (2007), p.811.

Google Scholar

[5] T. Nagai, K. Iijima, H.J. Hwang, et al: J. Am. Ceram. Soc. Vol. 83 (2000) No. 1, p.107.

Google Scholar

[6] G.F. Yao, X.H. Wang, Y. Yang, et al: J. Am. Ceram. Soc. Vol. 93 (2010) No. 6, p.1697.

Google Scholar

[7] Z.M. Dang, Y. F Yu, H.P. Xu, et al: Compos. Sci. Technol. Vol. 68 (2008) No. 1, P. 171.

Google Scholar

[8] S. Derling, T.H. Muller, H.P. Abicht, et al: J. Mater. Sci. Vol. 36 (2001), p.1425.

Google Scholar

[9] A.R. Babu, A.V. Prasadarao: J. Mater. Sci. Lett. Vol 16 (1997), p.313.

Google Scholar

[10] H.T. Langhammer, T. Muller, R. Bottcher, et al: J. Eur. Ceram. Soc. Vol 24 (2004), p.1489.

Google Scholar

[11] H.T. Langhammer, T. Muller, R. Bottcher, et al: Solid State Sci. Vol 5 (2003), p.965.

Google Scholar

[12] C.F. Yang and S.H. Lo: Mater. Res. Bull. Vol 32 (1997) No. 12, p.1713.

Google Scholar

[13] C.F. Yang: Ceram. Int. Vol 24 (1998), p.341.

Google Scholar

[14] C.D. Lei and J.H. Jean: J. J. Appl. Phys. Vol. 43 (2004), No. 5A , p.2585.

Google Scholar

[15] Z. Zhang, J.L. Zhang, S.F. Shao et al: Mater. Sci. Forum Vol. 687 (2011), p.287.

Google Scholar

[16] Z.J. Shen, W.P. Chen, J.Q. Qi, et al: Physica B. Vol 404 (2009), p.2374.

Google Scholar

[17] S.H. Yoon, J.H. Lee, D.Y. Kim, et al: J. Am. Ceram. Soc. Vol 85 (2002) No. 12, p.3111.

Google Scholar

[18] C.H. Kima, K.J. Park, Y.J. Yoon, et al: J. Eur. Ceram. Soc. Vol 28 (2008), p.1213.

Google Scholar

[19] W.P. Chen, Z.J. Shen, S.S. Guo, et al: Physica B. Vol 403 (2008), p.660.

Google Scholar

[20] S.H. Yoon, J.H. Lee, D.Y. Kim et al: J. Am. Ceram. Soc. Vol 86 (2003) No. 1, p.88.

Google Scholar