Annealing Effect on Synthesis of VO2 (M) Nanopowders by a Novel Solution-Based Process

Article Preview

Abstract:

This paper describes a novel and simple method to preparing monoclinic VO2 (M) nanopowders via the reaction of ammonium meta-vanadate (NH4VO3) and oxalic acid dihydrate (C2H2O4•2H2O). The products were characterized by means of methods. XRD results show that well crystallized nanopowders of the monoclinic VO2 (M) were successfully synthesized, while the molar ratio between NH4VO3 and C2H2O4•2H2O was kept at 1:0.5~2.5, and the annealing temperature was 350~750 °C for 2~10 hour in nitrogen atmosphere. The spherical morphology of the samples is characterized by SEM. The crystallization temperature of the desired M/R-phase VO2 is lower than 387 °C in this work. And the phase transition temperature is determined by differential scanning calorimetry (DSC).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

725-729

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. J. Morin, Physical Review Letters, 3(1): 34-36 (1959).

Google Scholar

[2] C. Tang, P. Gergopoulos, M. E. Fine, J. B. Cohen, M. Nygren, G. S. Knapp and A. Aldred, Physics Review B, 31 (2): 1000-1011 (1985).

Google Scholar

[3] S. D. Ji, F. Zhang, P. Jin, Res. Chem. Intermed., 37: 493-502 (2011).

Google Scholar

[4] C. X. Cao, Y. F. Gao and H. J. Luo, J. Phys. Chem. C, 112: 18810-18814 (2008).

Google Scholar

[5] C. Z. Wu, X. D. Zhang, J. Dai, J. L. Yang, Z. Y. Wu, S. Q. Wei and Y. Xie, Journal of Materials Chemistry, 21: 4509-4517 (2011).

Google Scholar

[6] G. Xu, C. M. Huang, P. Jin, M. Tazawa and D. M. Chen, Journal of Applied Physics, 104: 053101 (2008).

Google Scholar

[7] M. H. Lee, Solar Energy Materials and Solar Cells, 71: 537-540 (2002).

Google Scholar

[8] C. G. Granqvist, Solar Energy Materials and Solar Cells, 91: 1529-1598 (2007).

Google Scholar

[9] J. I. Sohn, H. J. Joo, A. E. Porter, C. J. Choi, K. Kim, D. J. Kang and M. E. Welland, Nano Letters, 7 (6): 1570-1574 (2007).

Google Scholar

[10] A. Gentle, A. I. Maaroof and G. B. Smith, Nanotechnology, 18: 025202 (2007).

Google Scholar

[11] C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard and Y. Sampeur, Surface and Coatings Technology, 98(1-3): 1477-1482 (1998).

DOI: 10.1016/s0257-8972(97)00154-0

Google Scholar

[12] J. Ni, W. T. Jiang, K. Yu, Y. F. Gao, Z. Q. Zhu, Electrochimica Acta, 56: 2122-2126 (2011).

Google Scholar

[13] L. Whittaker, C. Jaye, Z. Fu, D. A. Fischer and S. Banerjee, J. AM. CHEM. SOC., 131: 8884-8894 (2009).

Google Scholar

[14] S. Surnev, M. G. Ramsey, F. P. Netzer, Progress in Surface Science, 73: 117-165 (2003).

Google Scholar

[15] I. Balberg and S. Trokman, Journal of Applied Physics, 46 (5): 2111-2119 (1975).

Google Scholar

[16] V. L. Gal'perin, I. A. Khakhaev, F. A. Chudnovskii, E. B. Shadrin, Proc. SPIE, 2969: 270-273 (1996).

Google Scholar

[17] G. Xu, P. Jin, M. Tazawa, K. Yoshimura, Applied Surface Science, 244: 449-452 (2005).

Google Scholar

[18] T. D. Manning and I. P. Parkin, J. Mater. Chem., 14: 2554-2559 (2004).

Google Scholar

[19] T. H. Yang, S. Nori, H. H. Zhou and J. Narayan, Applied Physics Letters, 95: 102506 (2009).

Google Scholar

[20] M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani and T. Tsuchiya, Japanese Journal of Applied Physics, 50: 01BE04 (2011).

Google Scholar

[21] F. C. Case, Journal of Vacuum Science & Technology A, 2: 1509-1512 (1984).

Google Scholar

[22] Z. F. Peng, W. Jiang and H. Liu, J. Phys. Chem. C, 111: 1119-1122 (2007).

Google Scholar

[23] L. Q. Mai, B. Hu, T. Hu, W. Chen and E. D. Gu, J. Phys. Chem. B, 110 (39): 19083-19086 (2006).

Google Scholar

[24] L. T. Kang, Y. F. Gao and H. J. Luo, Applied Materials & Interfaces, 1 (10): 2211-2218 (2009).

Google Scholar

[25] X. L. Zheng, Z. A. Ni, B. Chao, Journal of Fuzhou University (Natural Science), 25 (4): 95-98 (1997).

Google Scholar

[26] L. J. Zhai, Z. Y. Hu, Y. L. Niu, Applied Chemical Industry, 37 (9): 1032-1034 (2008).

Google Scholar

[27] D. N. Sathyanarayana and C. C. Pater, J. Inorg. Nucl. Chem., 27: 297-302 (1965).

Google Scholar