Hydrogen Generation from CDS Modified-Titania Nanotube Arrays

Article Preview

Abstract:

A heterogeneous structured photo electrode using CDS -modified TiO2 nanotube arrays (TNA) was fabricated. The CDS nano particles were precipitated by immersing TNA into NaS and Cd (ClO4)2solution, where the number of immersion gave different amount of CDS precipitates. The effect of CDS on the performance of photochemical cell of TNA was evaluated. FESEM, EDS, XRD and UV-Visible were employed to characterize the structures and properties of CDS -modified TNA heterogeneous structure. The water splitting experiments were carried out using these CDS -modified TNA under standard AM 1.5 solar illumination (100mW/cm2>). An optimum hydrogen generation rate of 20.61μmole/cm2>)h (~0.50 ml/cm2>)h) was obtained. It was considered that the smaller band gap of CDS rendered the electrons a rapid transportation to the TiO2nanotube arrays and the recombination of electron-hole was therefore effectively prevented. In summary, the CDS nano particles were effective in promoting the catalytic effect of TNA for hydrogen production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

743-747

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki: Electrochemistry Communications Vol. 12 (2010), p.1184.

Google Scholar

[2] K.S. Raja, V.K. Mahajan, and M. Misra:J. Power Sources Vol. 159 (2006) p.1258.

Google Scholar

[3] X Chen, and S. S. Mao: Chemical Reviews Vol. 107 (2007) p.2891.

Google Scholar

[4] D.W. Jing, and L.J. Guo: Journal of Physical Chemistry: B Vol. 110 (2006) p.11139.

Google Scholar

[5] L. Yuekun, L. Zequan, C. Zhong, H. Jianying, L. Changjian: Materials Letters Vol. 64 (2010) p.1309.

Google Scholar

[6] C. J. Lin,W. Y. Yu,Y. T. Lu, S. H. Chien, Chemical Communication (2008)p.6031.

Google Scholar

[7] C. L. Li, J. Yuan B.Y. Han, L. Jiang, and W.F. Shangguan: International Journal of Hydrogen EnergyVol. 35 (2010) p.7073.

Google Scholar

[8] J. Bai, J. Li, Y. Liu, B. Zhou, and W. Cai: Applied Catalysis, B: EnvironmentalVol. 95 (2010)p.408.

Google Scholar

[9] Y. Chen, L. Wang, G. Lu, X. Yao, and L. Guo: Journal of Materials ChemistryVol. 21 (2011) p.5134.

Google Scholar

[10] D. Ke, S. Liu, K. Dai, J. Zhou, L. Zhang and T. Peng: Journal Physical Chemistry C, Vol. 113(2009) p.16021.

Google Scholar

[11] J. Wu, J. Lin, S. Yin and T. Sato: Journal Materials Chemistry, Vol. 11 (2001) p.3343.

Google Scholar

[12] W. Shangguan and A. Yoshida: Journal Physical Chemistry B, Vol. 106 (2002) p.12227.

Google Scholar

[13] W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, and J. Peng: Journal of the American Chemical SocietyVol. 132 (2010)p.12619.

Google Scholar

[14] J. Zhu, D. Yang, J. Geng, D. Chen, andZ. Jiang: Journal of Nanoparticle ResearchVol. 10 (2008)p.729.

Google Scholar

[15] H. Park, W. Choi and M. R. Hoffmann: Journal Materials Chemistry, Vol. 18 (2008) p.2379.

Google Scholar

[16] L. Wu, J. C. Yu and X. Fu, Journalof Molecular Catalyst. A: Chemical, Vol. 244 (2006) p.25.

Google Scholar

[17] X. Wang, G. Liu, Z. G. Chen, F. Li, L. Wang, G. Q. Lu andH. M. Cheng: Chemical Communication, (2009) p.3452.

Google Scholar

[18] D. Jing and L. Guo: Journal Physical Chemistry C, Vol. 111(2007) p.13437.

Google Scholar

[19] W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, and L.M. Peng: Journal of the American Chemical Society, Vol. 130 (2008) p.1124.

Google Scholar

[20] Y. R. Smith and V. Subramanian: Journal of Physical Chemistry C, Vol. 115 (2011) p.8376.

Google Scholar

[21] S. Banerjee, S.K. Mohapatra, P. P. Das, and M. Misra: Chemistry of Materials, Vol. 20 (2008) p.6784.

Google Scholar