TiO2 Nanowires/Nanobelts Originating from Anodically Grown Nanotube Arrays

Article Preview

Abstract:

TiO2 nanotube arrays have aroused great interest because of their enormous application in areas such as gas sensor, catalysts, biological materials, and solar cells. In this report, TiO2 nanowires/nanobelts originating from TiO2 nanotube arrays are fabricated by simple anodization of Ti foils in ethylene glycol (EG) containing 0.25wt% NH4F. From the field emission scanning electron microscopy (FE-SEM) it is observed that the morphology of the special structure is influenced by anodization voltage, water content and anodization time. In these factors, small amount of water plays a very important role in making the special nanostructure. Moreover, a possible mechanism that showed a relationship between the formation of the special structure and electric field directed chemical etch is proposed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 463-464)

Pages:

802-807

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. W. Bahnemann, S. N. Kholuiskaya, R. Dillert, A. I. Kulak and A. I. Kokorin: Appl. Catal. B: Environmental Vol. 32 (2002), p.161.

Google Scholar

[2] J. Y. Li, C. C. Chen, J. C. Zhao, H. Y. Zhu and J. Orthman: Appl. Catal. B: Environmental Vol. 37 (2002), p.331.

Google Scholar

[3] G. Sivalingam, K. Nagaveni, M. S. Hegde and G. Madras: Appl. Catal. B: Environmental Vol. 45 (2003), p.23.

Google Scholar

[4] Y. Ito: Biomaterials Vol. 20 (1999), p.2333.

Google Scholar

[5] G. K. Mor, M. A. Carvalho, O. K Varghese, M. V. Pishko and C. A. Grimes: J. Mater. Res. Vol. 19 (2004), p.628.

Google Scholar

[6] O. K. Varghese, D. W. Gong, M. Paulose, K. G. Ong and C. A. Grimes: Sens. Actuators, B Vol. 93 (2003), p.338.

Google Scholar

[7] M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin and C. A. Grimes: Nanotechnology Vol. 17 (2006), p.1446.

Google Scholar

[8] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes: Nano Lett. Vol. 6 (2005), p.215.

Google Scholar

[9] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes: Nano Lett. Vol. 5 (2005), p.191.

Google Scholar

[10] S. Z. Chu, K. Wada, S. Inoue and S. Todoroki: Surf. Coat. Technol. Vol. 169-170 (2003), p.190.

Google Scholar

[11] Y. Suzuki and S. Yoshikawa: J. Mater. Res. Vol. 19 (2004), p.982.

Google Scholar

[12] V. Zwilling, M. Aucouturier and E. Darque-Ceretti: Electrochim. Acta Vol. 45 (1999), p.921.

Google Scholar

[13] D. W. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen and E. C. Dickey: J. Mater. Res. Vol. 16 (2001), p.3331.

Google Scholar

[14] Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes: J. Mater. Res. Vol. 20 (2005), p.230.

Google Scholar

[15] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes: J. Phys. Chem. B Vol. 110 (2006), p.16179.

DOI: 10.1021/jp064020k

Google Scholar

[16] J. Wang, L. Zhao, Victor S. -Y. Lin and Z. Q. Lin: J. Mater. Chem. Vol. 19 (2009), p.3682.

Google Scholar

[17] S. Q. Li, Y. M. Liu, G. M. Zhang, X. Z. Zhao and J. B. Yin: Thin solid films (2011), In Press.

Google Scholar

[18] J. H. Lim and J. Choi: Small Vol. 3 (2007), p.1504.

Google Scholar

[19] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, C. H. Ye and L. D. Zhang: Nanotechnology Vol. 15 (2004), p.189.

Google Scholar

[20] Z. L. Xiao, Catherine Y. Han, U. Welp, H. H. Wang, W. K. Kwok, G. A. Willing, J. M. Hiller, R. E. Cook, D. J. Miller and G. W. Crabtree: Nano Lett. Vol. 2 (2002), p.1293.

DOI: 10.1021/nl025758q

Google Scholar

[21] K. S. Raja, T. Gandhi and M. Misra: Electrochem. Commun. Vol. 9 (2007), p.1069.

Google Scholar