Preparation of Monodisperse PEG Microspheres by a T-Junction Microfluidic Chip

Article Preview

Abstract:

Monodisperse polyethylene glycol (PEG) microspheres were prepared using microfluidic chips coupled with photopolymerization technique. Based on sheath effect in T-junction microfluidic channels, dispersions of uniform PEG prepolymer droplets in silicon oil are formed. The diameters of the formed PEG prepolymer droplets in the dispersions were controlled very well by altering the relative sheath/sample flow rate ratios. After photopolymerization under UV exposure, the uniform PEG prepolymer droplets isolated by silicon oil underwent photocrosslinking and became monodisperse PEG microspheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

178-181

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.J. Jang, W.G. Koh, Multiplexed enzyme-based bioassay within microfluidic devices using shape-coded hydrogel microparticles, Sensors and Actuators B. 143 (2010) 681–688.

DOI: 10.1016/j.snb.2009.10.028

Google Scholar

[2] B.G.D. Geest, J.P. Urbanski, T. Thorsen, J. Demeester, S.C.D. Smedt, Synthesis of monodisperse biodegradable microgels in microfluidic devices, Langmuir. 21 (2005) 10275–10279.

DOI: 10.1021/la051527y

Google Scholar

[3] K.S. Huang, T.H. Lai, Y.C. Lin, Manipulating the generation of Ca-alginatemicrospheresusing microfluidic channels as a carrier of gold nanoparticles, Lab Chip. 6 (2006) 954–957.

DOI: 10.1039/b606424h

Google Scholar

[4] S. Abraham, E.H. Jeong, T. Arakawa, S. Shoji, K.C. Kim, I. Kim, J.S. Go, Microfluidics assisted synthesis of well-defined spherical polymeric microcapsules and their utilization as potential encapsulants, Lab Chip. 6 (2006) 752–756.

DOI: 10.1039/b518006f

Google Scholar

[5] K.S. Huang, K. Lu, C.S. Yeh, S.R. Chung, C.H. Lin, C.H. Yang, Y.S. Dong, Microfluidic controlling monodisperse microdroplet for 5-fluorouracil loaded genipin-gelatin microcapsules. Journal of Controlled Release. 137 (2009) 15–19.

DOI: 10.1016/j.jconrel.2009.02.019

Google Scholar

[6] Y.C. Tan, V. Cristini, A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sensors and Actuators B. 114 (2006) 350–356.

DOI: 10.1016/j.snb.2005.06.008

Google Scholar

[7] C.H. Yang, K.S. Huang, P.W. Lin, Y.C. Lin, Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles, Sensors and Actuators B. 124 (2007) 510–516.

DOI: 10.1016/j.snb.2007.01.015

Google Scholar

[8] C.H. Yeh, Q.L. Zhao, S.J. Lee, Y.C. Lin, Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles, Sensors and Actuators A: Physical. 151 (2009) 231–236.

DOI: 10.1016/j.sna.2009.02.036

Google Scholar

[9] G.T. Vladisavljevic, I. Kobayashi, M. Nakajima, Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: Effect of emulsifier and oil types, Powder Technology. 183 (2008) 37–45.

DOI: 10.1016/j.powtec.2007.11.023

Google Scholar

[10] C.L. Lewis, Y. Lin, C. Yang, A.K. Manocchi, K.P. Yuet, P.S. Doyle, H. Yi, Microfluidic Fabrication of Hydrogel Microparticles Containing Functionalized Viral Nanotemplates, Langmuir. 26 (2010) 13436–13441.

DOI: 10.1021/la102446n

Google Scholar

[11] Y.C. Tsai, H.P. Jen, K.W. Lin, Y.Z. Hsieh, Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis, Journal of Chromatography A. 1111 (2006) 267–271.

DOI: 10.1016/j.chroma.2005.12.003

Google Scholar