Fabrication of ZnO Waveguide Films Deposited on Sapphire and MgO Substrates by RF Magnetron Sputtering

Article Preview

Abstract:

ZnO waveguide films were fabricated on sapphire (001) and MgO (100) substrates by the radiofrequency (RF) magnetron sputtering technology using ZnO ceramic as the target. Properties of the films were investigated by prism coupling method, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The results demonstrated that the ZnO nano-films have planar waveguide structure and have nearly stoichiometric composition with c-axis preferred orientation growth. The growth rates of the films were slightly influenced by the substrates. The effective refractive indices of the films were smaller than the bulk material and were affected by substrates. The relationships between the average grain sizes, substrates, and film thickness were analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa: Appl. Phy. Lett., Vol. 72 (1998) No. 25, p.3270.

Google Scholar

[2] Ü. Özgür, Y.I. Alivov, C. Liu,A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho and H. Morkoc: J. Appl. Phys., Vol. 98 (2005) No. 04, p.1301.

Google Scholar

[3] J.F. Cordaro, Y. Shim and J.E. May: J. Appl. Phys., Vol. 60 (1986) No. 12, p.4186.

Google Scholar

[4] B.S. Sang, A. Yamada and M. Konagai: Jpn. J. Appl. Phys., Vol. 37 (1998), p. L206.

Google Scholar

[5] P.C. Rafael, G.L. Araceli, P.Y.M. Olivier, S. Wilfrid, M.D. Reine, D. Daniel, M. Eric, P. Jacques, G. Philippe and V. Bruno: J. Appl. Phys., Vol. 97 (2005) No. 05, p.4095.

Google Scholar

[6] F.D. Paraguay, M. M. Yoshida and J. Morales: Thin Solid Films, Vol. 1 (2000) No. 2, p.137.

Google Scholar

[7] N.H. Kim and H.W. Kim: Material Letters, Vol. 58 (2004) No. 6, p.938.

Google Scholar

[8] Y.G. Zhang, G.B. Zhang and Y.X. Wang: J. Appl. Phys., Vol. 109 (2011) No. 06, p.436.

Google Scholar

[9] Z.Y. Zhang, C.G. Bao, W.J. Yao, S.Q. Ma, L.L. Zhang and S.Z. Hou: Superlattices and Microstructures, Vol. 49 (2011) No. 6, p.644.

Google Scholar

[10] J. Wen, C.L. Chen: China.J. Lumin., Vol. 29 (2008) No. 5, p.856.

Google Scholar

[11] B.J. Jin S.H. Bae S.Y. Lee and S. Im: Mater. Sci. Eng:B., Vol. 71 (2000) No. 1-3, p.301.

Google Scholar

[12] Y.H. Hsu, J. Lin, W.C. Tang: J. Mater Sci: Mater Electron, Vol. 19 (2008) No. 7, p.653.

Google Scholar

[13] N.A. Suvorova, I.O. Usov, L. Stan, R.F. Depaula, A.M. Dattelbaum, Q.X. Jia and A.A. Suvorova: J. Appl. Phys., Vol. 92 (2008) No. 14, p. (1911).

DOI: 10.1063/1.2896642

Google Scholar

[14] D.H. Zhang: Mater. Chem. Phys., Vol. 45 (1996) No. 3, p.248.

Google Scholar

[15] C. Liu, S.H. Chang, T.W. Noh, M. Abouzaid, P. Ruterana, H.H. Lee, D.W. Kim and J.S. Chung: Appl. Phys. Lett., Vol. 90 (2007) No. 1, p.906.

Google Scholar