Temperature-Sensitive Nanogels PNIPAAm/DMA Prepared and Research

Article Preview

Abstract:

There have much study about thermo-responsive nanogels,which exhibit temperature-controlled volume phase transitions.There have been few reports,however,of electrostatically neutral,thermosensitive nanogels with a high composition of hydrophilic monomer.Here,we describe the synthesis and characterization of a new class of nonionic copolymer nanogels based on N-ispropylacrylamide(NIPAM) and N,N-dimethylacrylamide(DMA),wich exhibit tunable volume phase transition temperatures.And increasing percentages of DMA in copolymer gels raises the LCST,and attenuates and broadens the volume phases transition.Through DLS, AFM and UV-Vis measurement it's size,shape and VPTTs.The character of nonionic NIPAM/DMA nanogels show it's tunable phase transitions promise to be useful for applicatipns in biotechnology and medicine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-145

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Sakai, R. Yoshida, Langmuir 20 (2004) 1036.

Google Scholar

[2] C.D. Jones, L.A. Lyon, Macromolecules 36 (2003) 1988.

Google Scholar

[3] X. Lu, Z. Hu, J. Gao, Macromolecules 33 (2000) 8698.

Google Scholar

[4] R.H. Pelton, Adv. Colloid Interface Sci. 85 (2000) 1.

Google Scholar

[5] S. Zhou, B. Chu, J. Phys. Chem. B 102 (1998) 1364.

Google Scholar

[6] K. McAllister, P. Sazani, M. Adam, M.J. Cho, M. Rubinstein, R.J. Samulski, J.M. DeSimone, J. Am. Chem. Soc. 124 (2002) 15198.

DOI: 10.1021/ja027759q

Google Scholar

[7] S.V. Vinogradov, E.V. Batrakova, A.V. Kabanov, Bioconjugate Chem. 15 (2004) 50.

Google Scholar

[8] M. Tabuchi, M. Ueda, N. Kaji, Y. Yamasaki, Y. Nagasaki, K. Yoshikawa, K. Kataoka, Y. Baba, Nature Biotechnology 22 (2004) 337.

DOI: 10.1038/nbt939

Google Scholar

[9] G.E. Morris, B. Vincent, M.J. Snowden, J. Colloid Interface Sci. 190 (1997) 198.

Google Scholar

[10] M. JSerpe, J. Kim, L.A. Lyon, Advanced Materials 16 (2004) 184.

Google Scholar

[11] C.E. Reese, A.V. Mikhonin, M. Kamenjicki, A. Tikhonov, S.A. Asher, J. Am. Chem. Soc. 126 (2004) 1493.

DOI: 10.1021/ja037118a

Google Scholar

[12] K. Ogawa, A. Nakayama, E. Kokufuta, Langmuir 19 (2003) 3178.

Google Scholar

[13] J.S. Lowe B.Z. Chowshry, J.R. Parsonage M.J. Snowden, Polymer 39 (1998) 1207.

Google Scholar

[14] D. Duracher,A. Elaissari,C. Pichot,J. Polym. Sci., Part A Polym. Chem. 37(1999) 1823.

Google Scholar

[15] D. Gan, L.A. Lyon, J. Am. Chem. Soc. 123 (2001) 8203.

Google Scholar

[16] S. Kazakov, M. Kaholek, I. Teraoka, K. Levon, Macromolecules 35 (2002) (1911).

Google Scholar

[17] K. Ogawa, A. Nakayama, E. Kokufuta, J. Phys. Chem. B 107 (2003) 8223.

Google Scholar

[18] K. Oh, J. Oh, H. Choi, Y. Bae, Macromolecules 31 (1998) 7328.

Google Scholar

[19] I. Berndt, W. Richtering, Macromolecules 36 (2003) 8780.

Google Scholar

[20] S. Ito, K. Ogawa, H. Suzuki, B. Wang, R. Yoshida, E. Kokufuta, Langmuir 15 (1999) 4289.

Google Scholar

[21] B.A. Buchholz, E.A. Doherty, M.N. Albarghouthi, F.M. Bogdan, J.M. Zahn, A.E. Barron, Anal. Chem. 73 (2001) 157.

Google Scholar

[22] M. Chiari,C. Micheletti,M. Nesi, M. Fazio P.G. Righetti, Electrophoresis 15 (1994) 177.

Google Scholar

[23] V. Barbier, J.L. Viovy, Current Opinion in Biotechnology 14 (2003) 51.

Google Scholar