Preparation, Electrical Conductivity, Photocurrent and Wettability of Carbon Microcoils

Article Preview

Abstract:

In this paper, we report on fabrication and physical properties of carbon microcoils, which are prepared by a chemical vapor deposition (CVD) process with Ni-catalyzed pyrolysis of acetylene, and characterized by a scanning electron microscope, a transmission electron microscope and an infrared spectrometer. The dark electrical conductivity of an isolated carbon microcoil is about 81 S/cm at room temperature, and its temperature dependence follows three-dimensional Mott variable-range hopping (VRH) model. Particularly, evident photocurrent is observed in the carbon microcoil upon cameral flash illumination. In addition, it is found that the surface of microcoil film is hydrophobic, showing a large water contact angle of about 135°. These results indicate that carbon microcoils have excellent physical properties, and can be used as optoelectronic and reinforced materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-131

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Motojima, S. Hoshiya, Y. Hishikawa, Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands, Carbon 41 (2003) 2653-2689.

DOI: 10.1016/s0008-6223(03)00292-6

Google Scholar

[2] Z.M. Shen, M. Ge, D.L. Zhao, Microwave absorbing properties of carbon microcoils, New Carbon Mater. 20 (2005) 289-293.

Google Scholar

[3] D.L. Zhao, Z.M. Shen, Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62 (2008) 3704-3706.

DOI: 10.1016/j.matlet.2008.04.032

Google Scholar

[4] Y. Kato, N. Adachi, T. Okuda, T. Yoshida, S. Motojima, T. Tsuda, Evaluation of induced electromotive force of a carbon micro coil, Jpn. J. Appl. Phys. 42 (2003) 5035-5037.

DOI: 10.1143/jjap.42.5035

Google Scholar

[5] S. Motojima, X. Chen, S. Yang, M. Hasegawa, Properties and potential applications of carbon microcoils/nanocoils, Diamond Related Mater. 13 (2004) 1989-(1992).

DOI: 10.1016/j.diamond.2004.06.020

Google Scholar

[6] K.L. Williams, A.B. Eriksson, R. Thorslund, J. Köhler, M. Boman, L. Stenmark, The electrothermal feasibility of carbon microcoil heaters for cold/hot gas microthrusters, J. Micromech. Microeng. 16 (2006) 1154-1161.

DOI: 10.1088/0960-1317/16/7/007

Google Scholar

[7] X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan, Y. Nakayama, Mechanics of a Carbon Nanocoil, Nano Lett. 3 (2003) 1299-1304.

DOI: 10.1021/nl034367o

Google Scholar

[8] D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grützmacher, Three-dimensional nanosprings for electromechanical sensors, Sensors Actuat. A 130-131 (2006) 54-61.

DOI: 10.1016/j.sna.2005.10.057

Google Scholar

[9] T. Katsuno, X. Chen, S. Yang, S. Motojima, Relationship of a carbon microcoil and carbon microcoil tactile sensor element in electrical properties, Diamond Related Mater. 16 (2007) 1000-1003.

DOI: 10.1016/j.diamond.2007.01.035

Google Scholar

[10] K. Yoshimura, K. Nakano, T. Miyake, Y. Hishikawa, C. Kuzuya, T. Katsuno, S. Motojima, Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone-rubber composites, Carbon 45 (2007) 1997-(2003).

DOI: 10.1016/j.carbon.2007.06.001

Google Scholar

[11] Y.B. Zhu, L. Zhang, L.T. Guo, D.H. Xiang, Study on the impedance of aligned carbon microcoils embedded in silicone rubber matrix, Chin. Phys. B 19 (2010) 126102.

DOI: 10.1088/1674-1056/19/12/126102

Google Scholar

[12] D. Banerjee, A. Jha, K.K. Chattopadhyay, Efficient field emission from coiled carbon nano/microfiber on copper substrate by dc-PECVD, Appl. Surf. Sci. 256 (2010) 7516- 7521.

DOI: 10.1016/j.apsusc.2010.05.099

Google Scholar

[13] K.L. Williams, J. Köhler, M. Boman, Fabrication and mechanical characterization of LCVD-deposited carbon micro-springs, Sensors Actuat. A 130-131 (2006) 358-364.

DOI: 10.1016/j.sna.2005.10.022

Google Scholar

[14] Q. Liu, Z.M. Cui, Z. Ma, S.W. Bian, W.G. Song, Carbon materials with unusual morphologies and their formation mechanism, J. Phys. Chem. C 111 (2007) 12420-12424.

DOI: 10.1021/jp073240a

Google Scholar

[15] T. Hayashida, L. Pan, Y. Nakayama, Mechanical and electrical properties of carbon tubule nanocoils, Physica B 323 (2002) 352-353.

DOI: 10.1016/s0921-4526(02)01002-5

Google Scholar

[16] N.K. Chang, S.H. Chang, Determining Mechanical Properties of Carbon Microcoils Using Lateral Force Microscopy, IEEE Transact. Nanotechn. 7 (2008) 197-201.

DOI: 10.1109/tnano.2007.915004

Google Scholar

[17] J.Y. Shen, Z.J. Chen, N.L. Wang, W.J. Li, L.J. Chen, Electrical properties of a single microcoiled carbon fiber, Appl. Phys. Lett. 89 (2006) 153132.

DOI: 10.1063/1.2360932

Google Scholar

[18] W.J. Li, H.T. Xu, Y.C. Guo, L.J. Chen, Vapor-liquid-solid-solid growth mechanism of Carbon micro-coils, Acta Physico-Chimica Sinica 22 (2006) 768-770.

DOI: 10.3866/pku.whxb20060625

Google Scholar

[19] C. Kuzuya, W. In-Hwang, S. Hirako, Y. Hishikawa, S. Motojima, Preparation, morphology, and growth mechanism of Carbon nanocoils, Chem. Vap. Deposition 8 (2002) 57-62.

DOI: 10.1002/1521-3862(20020304)8:2<57::aid-cvde57>3.0.co;2-y

Google Scholar

[20] P.E. Anderson, N.M. Rodringuez, Influence of the support on the structural characteristics of Carbon nanofibers produced from the metal-catalyzed decomposition of Ethylene, Chem. Mater. 12 (2000) 823-830.

DOI: 10.1021/cm990582n

Google Scholar

[21] R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Substrate-support interactions in metal-catalyzed carbon nanofiber growth, Carbon 39 (2001) 2277-2289.

DOI: 10.1016/s0008-6223(01)00047-1

Google Scholar

[22] K. Shibagaki, S. Motojima, Y. Umemoto, Y. Nishitani, Outermost surface microstructure of as-grown, heat-treated and partially oxidized carbon microcoils, Carbon 39 (2001) 1337-1342.

DOI: 10.1016/s0008-6223(00)00231-1

Google Scholar

[23] J.A. Menendez, E.M. Menendez, M.J. Iglesias, A. Garcia, J.J. Pis, Modification of the surface chemistry of active carbons by means of microwave-induced treatments, Carbon 37 (1999) 1115-1121.

DOI: 10.1016/s0008-6223(98)00302-9

Google Scholar

[24] N.F. Mott, Conduction in non-crystaline materials III. localized states in a pesudogap and near extremilities of conduction and valence bands, Philos. Mag. 19 (1969) 835.

DOI: 10.1080/14786436908216338

Google Scholar

[25] A. Tibrewala, E. Peiner, R. Bandorf, S. Biehl, H. Lüthje, Transport and optical properties of amorphous carbon and hydrogenated amorphous carbon films, Appl. Surf. Sci. 252 (2006) 5387-5390.

DOI: 10.1016/j.apsusc.2005.12.046

Google Scholar

[26] B.A. Samuel, R. Rajagopalan, H.C. Foley, M.A. Haque, Temperature effects on electrical transport in semiconducting nanoporous carbon nanowires, Nanotechnology 19 (2008) 275702.

DOI: 10.1088/0957-4484/19/27/275702

Google Scholar

[27] P.W. Barone, S. Baik, D.A. Heller, M.S. Strano, Near-infrared optical sensors based on single-walled carbon nanotubes, Nature Mater. 4 (2005) 86-92.

DOI: 10.1038/nmat1276

Google Scholar

[28] S.X. Lu, B. Panchapakesan, Photoconductivity in single wall carbon nanotube sheets, Nanotechnology 17 (2006) 1843-1850.

DOI: 10.1088/0957-4484/17/8/006

Google Scholar

[29] G.T. Liu, Z. Liu, Y.C. Zhao, K.H. Zheng, H.B. Huang, W.J. Ma, C.Z. Gu, L.F. Sun, S.S. Xie, Large photocurrent generated by a camera flash in single-walled carbon nanotubes, J. Phys. D: Appl. Phys. 40 (2007) 6898-6901.

DOI: 10.1088/0022-3727/40/22/007

Google Scholar

[30] Y. Liu, S.X. Lu, B. Panchapakesan, Alignment enhanced photoconductivity in single wall carbon nanotube films, Nanotechnology 20 (2009) 035203.

DOI: 10.1088/0957-4484/20/3/035203

Google Scholar

[31] A. Lafuma, D. Quéré, Superhydrophobic states, Nature Mater. 2 (2003) 457-460.

DOI: 10.1038/nmat924

Google Scholar

[32] Y.Z. Long, M.M. Li, W.M. Sui, Q.S. Kong, L. Zhang, Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites, Chin. Phys. B 18 (2009) 1221-1226.

DOI: 10.1088/1674-1056/18/3/063

Google Scholar

[33] X.H. Zhou, G.L. Cui, L.J. Zhi, S.S. Zhang, Large-area helical carbon microcoils with superhydropho-bicity over a wide range of pH values, New Carbon Mater. 22 (2007) 1-6.

DOI: 10.1016/s1872-5805(07)60005-5

Google Scholar

[34] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar