[1]
P. Galenko and V. Zhuravlev, Physics of Dendrites: Computational Experiments, World Scientific, Singapore, (1994).
Google Scholar
[2]
A. Dinsmore, M. Hsu, M. Nikolaides, et al., Colloidosomes: selectively permeable capsules composed of colloidal particles, Science. 298 (2002) 1006-1009.
DOI: 10.1126/science.1074868
Google Scholar
[3]
A. Bigi, E. Boanini, D. Walsh, et al., Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization, Angew. Chem. Int. Ed. 41 (2002) 2163-2166.
DOI: 10.1002/1521-3773(20020617)41:12<2163::aid-anie2163>3.0.co;2-g
Google Scholar
[4]
J. Yuan, K. Laubernds, Q. Zhang, et al., Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres, J. Am. Chem. Soc. 125 (2003) 4966-4967.
DOI: 10.1021/ja0294459
Google Scholar
[5]
B. Liu and H. C. Zeng, Mesoscale organization of CuO nanoribbons: formation of dandelions, J. Am. Chem. Soc. 126 (2004) 8124-8125.
DOI: 10.1021/ja048195o
Google Scholar
[6]
G. Sun, B. Dong, M. Cao, et al., Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption, Chem. Mater. 23 (2011) 1587-1593.
DOI: 10.1021/cm103441u
Google Scholar
[7]
R. Qiu, H. G. Cha, H. B. Noh, et al., Preparation of dendritic copper nanostructrures and their characterization for electroreduction, J. Phys. Chem. 113 (2009) 15891-15896.
Google Scholar
[8]
R. Whetten, J. Khoury, M. Alvarez, et al., Nanocrystal gold molecules, Adv. Mater. 8 (1996) 428-433.
Google Scholar
[9]
S. Sun, C. Murray, D. Weller, et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).
DOI: 10.1126/science.287.5460.1989
Google Scholar
[10]
C. Niu, E. K. Sichel, R. Hoch, et al., High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480-1482.
DOI: 10.1063/1.118568
Google Scholar
[11]
G. Che, B. B. Lakshmi, E. R. Fisher, et al., Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393 (1998) 346-349.
DOI: 10.1038/30694
Google Scholar
[12]
Q. L. Bao, S. J. Bao, C. M. Li, et al., Supercapacitance of solid carbon nanofibers made from ethanol flames, J. Phys. Chem. 112 (2008) 3612-3618.
DOI: 10.1021/jp710420k
Google Scholar
[13]
X. W. Chen, D. S. Su, S.B.A. Hamid, et al., Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers, Carbon 45 (2007).
DOI: 10.1021/cm051623k
Google Scholar
[14]
K. Otsuka, Y. Abe, N. Kanai, et al., Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions, Carbon 42 (2004) 727-736.
DOI: 10.1016/j.carbon.2003.12.076
Google Scholar
[15]
C. Pham-Hun, N. Keller, V. V. Roddatis, et al., Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. J. Phys. Chem. 4 (2002) 514-521.
DOI: 10.1039/b106512m
Google Scholar