Growth of Carbon Fibers from Copper Dendrite Nanostructures Catalyzed Decomposition of Acetylene

Article Preview

Abstract:

Carbon nanofibers with novel morphology are successfully synthesized by the chemical vapor deposition of acetylene with dendritic copper nanocrystals on Cu electrode as a catalyst. Growth mechanism of sandwich-like and multi-branched carbon fibers is discussed, and the impact of catalyst morphology and growth time on the structure of the carbon nanofibers is investigated. The organic groups and the thermal stability of the as-prepared carbon nanofibers are revealed by Fourier transform infrared spectrum (IR) and thermogravimetric (TG) analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-107

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Galenko and V. Zhuravlev, Physics of Dendrites: Computational Experiments, World Scientific, Singapore, (1994).

Google Scholar

[2] A. Dinsmore, M. Hsu, M. Nikolaides, et al., Colloidosomes: selectively permeable capsules composed of colloidal particles, Science. 298 (2002) 1006-1009.

DOI: 10.1126/science.1074868

Google Scholar

[3] A. Bigi, E. Boanini, D. Walsh, et al., Morphosynthesis of octacalcium phosphate hollow microspheres by polyelectrolyte-mediated crystallization, Angew. Chem. Int. Ed. 41 (2002) 2163-2166.

DOI: 10.1002/1521-3773(20020617)41:12<2163::aid-anie2163>3.0.co;2-g

Google Scholar

[4] J. Yuan, K. Laubernds, Q. Zhang, et al., Self-assembly of microporous manganese oxide octahedral molecular sieve hexagonal flakes into mesoporous hollow nanospheres, J. Am. Chem. Soc. 125 (2003) 4966-4967.

DOI: 10.1021/ja0294459

Google Scholar

[5] B. Liu and H. C. Zeng, Mesoscale organization of CuO nanoribbons: formation of dandelions, J. Am. Chem. Soc. 126 (2004) 8124-8125.

DOI: 10.1021/ja048195o

Google Scholar

[6] G. Sun, B. Dong, M. Cao, et al., Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption, Chem. Mater. 23 (2011) 1587-1593.

DOI: 10.1021/cm103441u

Google Scholar

[7] R. Qiu, H. G. Cha, H. B. Noh, et al., Preparation of dendritic copper nanostructrures and their characterization for electroreduction, J. Phys. Chem. 113 (2009) 15891-15896.

Google Scholar

[8] R. Whetten, J. Khoury, M. Alvarez, et al., Nanocrystal gold molecules, Adv. Mater. 8 (1996) 428-433.

Google Scholar

[9] S. Sun, C. Murray, D. Weller, et al., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-(1992).

DOI: 10.1126/science.287.5460.1989

Google Scholar

[10] C. Niu, E. K. Sichel, R. Hoch, et al., High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480-1482.

DOI: 10.1063/1.118568

Google Scholar

[11] G. Che, B. B. Lakshmi, E. R. Fisher, et al., Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393 (1998) 346-349.

DOI: 10.1038/30694

Google Scholar

[12] Q. L. Bao, S. J. Bao, C. M. Li, et al., Supercapacitance of solid carbon nanofibers made from ethanol flames, J. Phys. Chem. 112 (2008) 3612-3618.

DOI: 10.1021/jp710420k

Google Scholar

[13] X. W. Chen, D. S. Su, S.B.A. Hamid, et al., Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers, Carbon 45 (2007).

DOI: 10.1021/cm051623k

Google Scholar

[14] K. Otsuka, Y. Abe, N. Kanai, et al., Synthesis of carbon nanotubes on Ni/carbon-fiber catalysts under mild conditions, Carbon 42 (2004) 727-736.

DOI: 10.1016/j.carbon.2003.12.076

Google Scholar

[15] C. Pham-Hun, N. Keller, V. V. Roddatis, et al., Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes. J. Phys. Chem. 4 (2002) 514-521.

DOI: 10.1039/b106512m

Google Scholar