Study of Electronic Structures and Transport Properties on Saturated GaN Nanowires

Article Preview

Abstract:

Geometry structure, electronic structure and electronic transport properties of saturated hexagonal single crystalline GaN nanowires in the [001] growth direction have been investigated based on generalized gradient approximation (GGA) of density functional theory (DFT) and non-equilibrium green's function (NEGF) method. The results show, there is a contraction of the bond lengths of the saturated GaN nanowires after optimization; the nanowires have direct band gap, and band gap decreases with the increase of the cross section of nanowires; the electronic density of state and electronic transmission spectra of two-probe system have their own pulse-type sharp peaks with almost the same location of electron energy; the curves of I-V characteristics of the three saturated GaN nanowires are symmetric over the entire bias-voltage range, and they are semiconducting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

118-124

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nakamura, M. Senoh, T. Mukai, High-power InGaN/GaN double-heterostructure violet light emitting diodes, Appl. Phys. Lett. 62 (1993) 2390-2392.

DOI: 10.1063/1.109374

Google Scholar

[2] G. S. Cheng, L. D. Zhang, Y. Zhu, Large-scale synthesis of single crystalline gallium nitride nanowires, Appl. Phys. Lett. 75, (1999) 2455.

DOI: 10.1063/1.125046

Google Scholar

[3] X. F. Duan, C. M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. 122 (1), pp (2000) 188–189.

DOI: 10.1021/ja993713u

Google Scholar

[4] X. M. Cai, A.B. Djurisic, M.H. Xie, GaN nanowires: CVD synthesis and properties, Thin Solid Films 515 (2006) 984–989.

DOI: 10.1016/j.tsf.2006.07.085

Google Scholar

[5] K. Yoshihiko, H. Nobuyuki, D. Kentaro, N. Koichi, T, First-principle study on the structures and electronic properties of gallium nitride nanowires, phys. stat. sol. 7 (2003) 2318–2322.

DOI: 10.1002/pssc.200303406

Google Scholar

[6] Z. F. Jhang, J. Y. Jiang, Y. H. Tang, L. W. Tu, Electrostatic and structural properties of GaN nanorods/nanowires from first principles, Appl. Phys. Lett. 89 (2006) 203101.

DOI: 10.1063/1.2388129

Google Scholar

[7] A. Gulans and I. Tale, Ab initio calculation of wurtzite-type GaN nanowires, Phys. Status Solidi. (2007) 1197-1200.

DOI: 10.1002/pssc.200673848

Google Scholar

[8] D. J. Carter, J. D. Gale, B. Delley, C. Stampfl, Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles, Phys. ReV. B. 77 (2008) 115349.

DOI: 10.1103/physrevb.77.115349

Google Scholar

[9] S. Gradecak, F. Qian, Y. Li, H. G. Park, C. M. Lieber, GaN nanowire lasers with low lasing thresholds, Appl. Phys. Lett. 87 (2005) 173111.

DOI: 10.1063/1.2115087

Google Scholar

[10] J. E. Northrup, J. Neugebauer, Theory of GaN () and () surfaces, Phys. Rev. B. 53 (1996) R10477.

Google Scholar

[11] M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for non-equilibrium electron transport, Phys. Rev. B. 65 (2002) 165401.

DOI: 10.1103/physrevb.65.165401

Google Scholar

[12] J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B. 63 (2001) 245407.

DOI: 10.1103/physrevb.63.245407

Google Scholar

[13] M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B. 31 (1985) 6207-6215.

DOI: 10.1103/physrevb.31.6207

Google Scholar

[14] Z. G. Wang, S. J. Wang, J. B. Li, F. Gao, W. J. Weber, Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections, J. Phys. Chem. 113 (44) (2009) 19281-19285.

Google Scholar

[15] P. Zhao, P. J. Wang, Z. Zhang, D. S. Liu, Electronic transport properties of a molecular switch with carbon nanotube electrodes: A first-principles study, Physica B. 405 (2010) 446–450.

DOI: 10.1016/j.physb.2009.09.009

Google Scholar

[16] M. F. Ng, L. P. Zhou, S. W. Yang, L. Y. Sim, V. B. C. Tan, P. Wu, Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach, Phys. Rev. B. 76 (2007) 155435.

DOI: 10.1103/physrevb.76.155435

Google Scholar

[17] Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, D. H. Wang, First-principles study of transport properties of endohedral Li@C20 metallofullerene, Current Applied Physics. 10 (2010) 260–265.

DOI: 10.1016/j.cap.2009.06.003

Google Scholar