[1]
S. Nakamura, M. Senoh, T. Mukai, High-power InGaN/GaN double-heterostructure violet light emitting diodes, Appl. Phys. Lett. 62 (1993) 2390-2392.
DOI: 10.1063/1.109374
Google Scholar
[2]
G. S. Cheng, L. D. Zhang, Y. Zhu, Large-scale synthesis of single crystalline gallium nitride nanowires, Appl. Phys. Lett. 75, (1999) 2455.
DOI: 10.1063/1.125046
Google Scholar
[3]
X. F. Duan, C. M. Lieber, Laser-assisted catalytic growth of single crystal GaN nanowires, J. Am. Chem. 122 (1), pp (2000) 188–189.
DOI: 10.1021/ja993713u
Google Scholar
[4]
X. M. Cai, A.B. Djurisic, M.H. Xie, GaN nanowires: CVD synthesis and properties, Thin Solid Films 515 (2006) 984–989.
DOI: 10.1016/j.tsf.2006.07.085
Google Scholar
[5]
K. Yoshihiko, H. Nobuyuki, D. Kentaro, N. Koichi, T, First-principle study on the structures and electronic properties of gallium nitride nanowires, phys. stat. sol. 7 (2003) 2318–2322.
DOI: 10.1002/pssc.200303406
Google Scholar
[6]
Z. F. Jhang, J. Y. Jiang, Y. H. Tang, L. W. Tu, Electrostatic and structural properties of GaN nanorods/nanowires from first principles, Appl. Phys. Lett. 89 (2006) 203101.
DOI: 10.1063/1.2388129
Google Scholar
[7]
A. Gulans and I. Tale, Ab initio calculation of wurtzite-type GaN nanowires, Phys. Status Solidi. (2007) 1197-1200.
DOI: 10.1002/pssc.200673848
Google Scholar
[8]
D. J. Carter, J. D. Gale, B. Delley, C. Stampfl, Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles, Phys. ReV. B. 77 (2008) 115349.
DOI: 10.1103/physrevb.77.115349
Google Scholar
[9]
S. Gradecak, F. Qian, Y. Li, H. G. Park, C. M. Lieber, GaN nanowire lasers with low lasing thresholds, Appl. Phys. Lett. 87 (2005) 173111.
DOI: 10.1063/1.2115087
Google Scholar
[10]
J. E. Northrup, J. Neugebauer, Theory of GaN () and () surfaces, Phys. Rev. B. 53 (1996) R10477.
Google Scholar
[11]
M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Density-functional method for non-equilibrium electron transport, Phys. Rev. B. 65 (2002) 165401.
DOI: 10.1103/physrevb.65.165401
Google Scholar
[12]
J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B. 63 (2001) 245407.
DOI: 10.1103/physrevb.63.245407
Google Scholar
[13]
M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B. 31 (1985) 6207-6215.
DOI: 10.1103/physrevb.31.6207
Google Scholar
[14]
Z. G. Wang, S. J. Wang, J. B. Li, F. Gao, W. J. Weber, Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections, J. Phys. Chem. 113 (44) (2009) 19281-19285.
Google Scholar
[15]
P. Zhao, P. J. Wang, Z. Zhang, D. S. Liu, Electronic transport properties of a molecular switch with carbon nanotube electrodes: A first-principles study, Physica B. 405 (2010) 446–450.
DOI: 10.1016/j.physb.2009.09.009
Google Scholar
[16]
M. F. Ng, L. P. Zhou, S. W. Yang, L. Y. Sim, V. B. C. Tan, P. Wu, Theoretical investigation of silicon nanowires: Methodology, geometry, surface modification, and electrical conductivity using a multiscale approach, Phys. Rev. B. 76 (2007) 155435.
DOI: 10.1103/physrevb.76.155435
Google Scholar
[17]
Y. P. An, C. L. Yang, M. S. Wang, X. G. Ma, D. H. Wang, First-principles study of transport properties of endohedral Li@C20 metallofullerene, Current Applied Physics. 10 (2010) 260–265.
DOI: 10.1016/j.cap.2009.06.003
Google Scholar