Preparation of Sandwich-Like TiO2/Graphene/TiO2 Films and its Application in Photocatalysis

Article Preview

Abstract:

Anatase nano-TiO2 film was prepared by sol-gel method and graphene oxide nanosheets synthesized by Hummers method were deposited on this TiO2 thin film. Another nano-TiO2 film was then deposited on the graphene film forming sandwich-like to avoid graphene layer peeled off. Scanning electron microscope shows that TiO2 particles layer with a diameter of about 20 nm were densely and uniformly deposited on both surfaces of the graphene layer to form a sandwich-like composite structure. The composite films exhibit excellent photocatalytic degradation to methyl orange and remains chemically stable in the whole process without anything exfoliation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wang, R. Shi, J. Lin and Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization, Applied Catalysis B: Environmental 100 (2010) 179-183.

DOI: 10.1016/j.apcatb.2010.07.028

Google Scholar

[2] K. I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[3] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, Stauber, N. M. R. Peres and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008) 1308.

DOI: 10.1126/science.1156965

Google Scholar

[4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[5] C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[6] O. Akhavan and E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation, J. Phys. Chem. C 113 (2009) 20214-20220.

DOI: 10.1021/jp906325q

Google Scholar

[7] Omid Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts, ACS Nano 4, (2010) 4174-4180.

DOI: 10.1021/nn1007429

Google Scholar

[8] Y. Zhang, Z. R. Tang, X. Fu and Y. J. Xu, TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2−Graphene truly different from other TiO2-Carbon composite materials? ACS Nano 4 (2010).

DOI: 10.1021/nn1024219

Google Scholar

[9] G. Williams, B. Seger and P. V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide, ACS Nano 2 (2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[10] W. S. Hummers Jr. and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[11] S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen and R. S. Ruoff, Graphene−Silica composite thin films as transparent conductors, Nano Lett. 7 (2007).

DOI: 10.1021/nl070477+

Google Scholar

[12] X. Wang, L. Zhi and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8 (2008) 323-327.

DOI: 10.1021/nl072838r

Google Scholar

[13] Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y.M. Lam, H. Zhang, Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes, ACS Nano 4 (2010) 5263-5268.

DOI: 10.1021/nn1015874

Google Scholar

[14] Z. Osváth, Al. Darabont, P. Nemes-Incze, E. Horváth, Z.E. Horváth and L.P. Biró, Graphene layers from thermal oxidation of exfoliated graphite plates, Carbon 45 (2007) 3022-3026.

DOI: 10.1016/j.carbon.2007.09.033

Google Scholar

[15] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 1558-1565 (2007).

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[16] J. Wu, X. Shen, L. Jiang, K. Wang and K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Applied Surface Science 256 (2010) 2826-2830.

DOI: 10.1016/j.apsusc.2009.11.034

Google Scholar

[17] W. C. Oh, A. R. Jung and W. B. Ko, Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity, Materials Science and Engineering C 29 (2009).

DOI: 10.1016/j.msec.2008.10.034

Google Scholar

[18] T. Facci and F. Huguenin, Spectroelectrochemical properties and lithium ion storage in self-assembled nanocomposites from TiO2, Langmuir 26 (2010) 4489-4496.

DOI: 10.1021/la903301c

Google Scholar

[19] H. Wang, Y. Hu, L Zhang and C. Li, Self-cleaning films with high transparency based on TiO2 nanoparticles synthesized via flame combustion, Ind. Eng. Chem. Res. 49 (2010) 3654-3662.

DOI: 10.1021/ie901782w

Google Scholar

[20] W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang and C. Fan, Graphene-based antibacterial paper, ACS Nano 4 (2010) 4317-4323.

DOI: 10.1021/nn101097v

Google Scholar

[21] T. Kamegawa, D. Yamahana and H. Yamashita, Graphene coating of TiO2 nanoparticles loaded on mesoporous silica for enhancement of photocatalytic activity, J. Phys. Chem. C 114 (2010) 15049-15053.

DOI: 10.1021/jp105526d

Google Scholar

[22] O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction, J. Phys. Chem. C 114 (2010) 12955-12959.

DOI: 10.1021/jp103472c

Google Scholar