Fast Synthesis of Rutile/Apatite Core/Shell Structured Photocatalyst in Simulated Body Fluid

Article Preview

Abstract:

The core/shell structured rutile/apatite was prepared by soaking rutile TiO2 (R-TiO2) microspheres into a simulated body fluid (SBF) only for 1 day. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and N2 adsorption measurements. XRD showed that the apatite content increased with prolonging the soaking time or increasing the SBF concentration. TEM and EDX demonstrated that apatite had been coated on the surface of R-TiO2 microspheres successfully. HRTEM indicated that the lattice spacings of 0.27 nm and 0.32 nm were assigned to (211) plane of apatite and (101) plane of R-TiO2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-71

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Nonami, H. Hase, K. Funakoshi, Apatite-coated titanium dioxide photocatalyst for air purification, Catal. Today. 96 (2004)113-118.

DOI: 10.1016/j.cattod.2004.06.112

Google Scholar

[2] S.D. Ji, S. Murakami, M. Kamitakahara, K. Ioku, Fabrication of titania/hydroxyapatite composite granules for photocatalyst, Mater. Res. Bull. 44 (2009) 768-774.

DOI: 10.1016/j.materresbull.2008.09.047

Google Scholar

[3] H.F. Liu, X.N. Cheng, J. Yang, X.H. Yan, H.B. Shi, Preparation and characterization of nucleus/shell TiO2/HAP complex nanophotocatalyst, J. Mater. Sci. Technol. 23 (2007) 123-126.

Google Scholar

[4] H. Nishikawa, A high active type of hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation, J. Mol. Catal. A 207 (2004) 149-153.

DOI: 10.1016/s1381-1169(03)00472-2

Google Scholar

[5] M.P. Reddy, A. Venugopal, M. Subrahmanyam, Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension, Appl. Catal. B 69 (2006) 164-170.

DOI: 10.1016/j.apcatb.2006.07.003

Google Scholar

[6] T. Nonami, H. Taoda, N.T. Hue, E. Wa tanabe, K. Iseda, M. Tazawa, M. Fukaya, Apatite formation on TiO2 photocatalyst film in a pseudo body solution, Mater. Res. Bull. 33 (1998) 125-131.

DOI: 10.1016/s0025-5408(97)00197-9

Google Scholar

[7] H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, H.E. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method, Biomaterials 25 (2004) 2533-2538.

DOI: 10.1016/j.biomaterials.2003.09.041

Google Scholar

[8] D.Y. Chen, E.H. Jordan, M. Gell, M. Wei, Alkaline induced apatite formation on solution precursor plasma spray dense TiO2 coatings, Acta Biomaterialia 4 (2008) 553-559.

DOI: 10.1016/j.actbio.2007.11.008

Google Scholar

[9] F.Z. Shi, Q.H. Zhang, Y.G. Li, H.Z. Wang, Preparation and characterization of apatite coated rutile TiO2 composite powders, J. Inorg. Mater. 24 (2009) 893-896.

DOI: 10.3724/sp.j.1077.2009.00893

Google Scholar

[10] T. Kasuga, H. Kondo, M. Nogami, Apatite formation on TiO2 in simulated body fluid, J. Cryst. Growth 235 (2002) 235-240.

DOI: 10.1016/s0022-0248(01)01782-1

Google Scholar

[11] Q.H. Zhang, L. Gao, J.K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B 26 (2000) 207-215.

DOI: 10.1016/s0926-3373(00)00122-3

Google Scholar

[12] C. Ohtsuki, H. Iida, S. Nakamura, A. Osaka, Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides, J. Biomed. Mater. Res. 35 (1997) 39-47.

DOI: 10.1002/(sici)1097-4636(199704)35:1<39::aid-jbm5>3.0.co;2-n

Google Scholar

[13] J. Sun, L. Gao, Q.H. Zhang, Synthesizing and comparing the photocatalytic properties of high surface area rutile and anatase titania nanoparticles, J. Am. Ceram. Soc. 86 (2003) 1677-1682.

DOI: 10.1111/j.1151-2916.2003.tb03539.x

Google Scholar

[14] M. Keshmiri, T. Trocrzynski, Apatite formation on TiO2 anatase microspheres, J. Non-Cryst. Solids 324 (2003) 289

DOI: 10.1016/s0022-3093(03)00363-6

Google Scholar

[15] N. Balázs, K. Mogyorósi, D.F. Srankó, A. Pallagi, T. Alapi, A. Oszkó, A. Dombi, P. Sipos, The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition, Appl. Catal. B 84 (2008) 356-362.

DOI: 10.1016/j.apcatb.2008.04.018

Google Scholar

[16] K. Cheng, S. Zhang, W.J. Weng, X.T. Zeng, The interfacial study of sol-gel derived fluoridated hydroxyapatite coatings, Sur. Coating Tech. 198 (2005) 242-246.

DOI: 10.1016/j.surfcoat.2004.10.024

Google Scholar

[17] Z.P. Yang, S.H. Si, X.M. Zeng, C.J. Zhang, H.J. Dai, Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study, Acta Biomaterialia 4 (2008) 560-568.

DOI: 10.1016/j.actbio.2007.10.003

Google Scholar

[18] H.M. Kim, T. Himeno, M. Kawashita, J.H. Lee, T. Kokubo, T. Nakamura, Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid, J. Biomed. Mater. Res. 67A (2003) 1305-1309.

DOI: 10.1002/jbm.a.20039

Google Scholar