Anatase TiO2 Colloids Derived from the Peptization of TiO2 Precipitates with CF3COOH and their Photocatalytic Activities

Article Preview

Abstract:

The highly dispersed TiO2 sols composed of anatase crystallites (ca.5 nm) were prepared by peptization of amorphous precipitates with trifluoroactic acid (TFA) during the synthesis. The size and crystallinity of the particles were tuned by the subsequent hydrothermal treatment. The prepared TiO2 nanocrystals were characterized by X-ray diffraction and transmission electron microscopy (TEM). The TEM results indicated that the growth of the crystallites could be inhibited by the increasing addition of TFA and the average sizes of TiO2 nanocrystals were all ultrafine. The degradation of phenol over the nanocrystals after calcination at 500 °C was investigated. The photocatalytic results showed that the sample with a high addition of TFA obtained a better photocatalytic property than that of the commercial TiO2

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-50

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed. 42 (2003) 4908-4911.

DOI: 10.1002/anie.200351577

Google Scholar

[2] Y.B. Xie, C.W. Yuan, Transparent TiO2 sol nanocrystallites mediated homogeneous-like photocatalytic reaction and hydrosol recycling process, J. Mater. Sci. 40 (2005) 6375-6383.

DOI: 10.1007/s10853-005-1825-y

Google Scholar

[3] K. Luchi, Y. Ohko, T. Tatsuma, A. Fujishima, Cathode-separated TiO2 photocatalysts applicable to a photochromic device responsive to backside illumination, Chem. Mater. 16 (2004) 1165-1167.

DOI: 10.1021/cm035031i

Google Scholar

[4] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, Mechanism in Nb doped titania oxygen gas sensor Sens. Actuat. B: Chem. 46 (1998) 194-201.

DOI: 10.1016/s0925-4005(98)00111-7

Google Scholar

[5] A. Hagfeldt, M. Grätzel, Light induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.

DOI: 10.1021/cr00033a003

Google Scholar

[6] S. Li, Y.G. Li, H.Z. Wang, W.G. Fan, Q.H. Zhang, Peptization–hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem. 27 (2009) 4078-4084.

DOI: 10.1002/ejic.200900371

Google Scholar

[7] M. Addamo, V. Augugliaro, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello, Preparation, characterization and photoactivity of polycrystalline nanostructured TiO2 catalysts, J. Phys. Chem. B 108 (2004) 3303-3310.

DOI: 10.1002/chin.200421014

Google Scholar

[8] C. Hu, Y. Lan, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.

DOI: 10.1021/jp0564400

Google Scholar

[9] Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, S. Illia, C. Sanchez, Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility, J. Mater. Chem. 16 (2006) 77-82.

DOI: 10.1039/b512824m

Google Scholar

[10] D.J. Reidy, J.D. Holmes, M.A. Morris, The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2, J. Eur. Ceram. Soc. 26 (2006) 1527-1534.

DOI: 10.1016/j.jeurceramsoc.2005.03.246

Google Scholar

[11] N. Serpone, D. Lawless, R. Khairutdinov, Size Effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor, J. Phys. Chem. 99 (1995) 16646-16654.

DOI: 10.1021/j100045a026

Google Scholar

[12] L.Y. Wang, Y.P. Sun, B.S. Xu, Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti-Si oxide structures, J. Mater. Sci. 43 (2008) 1979-(1986).

DOI: 10.1007/s10853-007-2431-y

Google Scholar

[13] Y. Zhao, C. Li, X. Liu, F. Gu, H. L. Du, L. Shi, Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame, Appl. Catal. B: Environ. 79 (2008) 208-215.

DOI: 10.1016/j.apcatb.2007.09.044

Google Scholar

[14] H.B. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata S. Yanagida, Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, J. Mater. Chem. 11 (2001) 1694-1703.

DOI: 10.1039/b008974p

Google Scholar

[15] T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units, J. Phys. Chem. B, 101 (1997) 8052-8053.

DOI: 10.1021/jp9705131

Google Scholar

[16] Z. Zhang, C. -C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B 102 (1998) 10871–10878.

DOI: 10.1021/jp982948+

Google Scholar

[17] K. Yanagisawa, J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature, J. Phys. Chem. B 103 (1999) 7781-7787.

DOI: 10.1021/jp990521c

Google Scholar

[18] Q.H. Zhang, L. Gao, J.K. Guo, Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder, J. Eur. Ceram. Soc. 20 (2000) 2153-2158.

DOI: 10.1016/s0955-2219(00)00085-6

Google Scholar

[19] S. -J. Kim, S. -D. Park, Y.H. Jeong, S. Park, Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution, J. Am. Ceram. Soc. 82 (1999) 927-932.

DOI: 10.1111/j.1151-2916.1999.tb01855.x

Google Scholar

[20] B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Nonaqueous production of nanostructured anatase with high-energy facets, J. Am. Chem. Soc. 130 (2008) 17563-17567.

DOI: 10.1021/ja8069715

Google Scholar

[21] Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater. 14 (2002) 1208-1211.

DOI: 10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0

Google Scholar

[22] A.S. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J.P. Jolivet, Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, J. Mater. Chem. 13 (2003).

DOI: 10.1039/b211271j

Google Scholar

[23] Q.H. Zhang, L. Gao, Ta3N5 Nanoparticles with enhanced photocatalytic efficiency under visible light irradiation, Langmuir 20 (2004) 9821-9827.

DOI: 10.1021/la048807i

Google Scholar

[24] Q.H. Zhang, W.G. Fan, L. Gao, Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst, Appl. Catal. B: Environ. 76 (2007) 168-173.

DOI: 10.1016/j.apcatb.2007.05.024

Google Scholar

[25] J.G. Yu, G.H. Wang, B. Cheng, M.H. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal., B 69 (2007) 171-180.

DOI: 10.1016/j.apcatb.2006.06.022

Google Scholar

[26] M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide, Chem. Mater. 14 (2002) 1974-(1980).

DOI: 10.1021/cm0102739

Google Scholar

[27] S.W. Yang, L. Gao, Preparation of titanium dioxide nanocrytallite with high photocatalytic activities, J. Am. Ceram. Soc. 88 (2005) 968-970.

Google Scholar

[28] C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors, J. Non-Cryst. Solid 100 (1988) 65-76.

DOI: 10.1016/0022-3093(88)90007-5

Google Scholar

[29] J.G. Li, T. Shigaki, X.D. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties, J. Phys. Chem. C 111 (2007) 4969-4976.

DOI: 10.1021/jp0673258

Google Scholar