[1]
S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed. 42 (2003) 4908-4911.
DOI: 10.1002/anie.200351577
Google Scholar
[2]
Y.B. Xie, C.W. Yuan, Transparent TiO2 sol nanocrystallites mediated homogeneous-like photocatalytic reaction and hydrosol recycling process, J. Mater. Sci. 40 (2005) 6375-6383.
DOI: 10.1007/s10853-005-1825-y
Google Scholar
[3]
K. Luchi, Y. Ohko, T. Tatsuma, A. Fujishima, Cathode-separated TiO2 photocatalysts applicable to a photochromic device responsive to backside illumination, Chem. Mater. 16 (2004) 1165-1167.
DOI: 10.1021/cm035031i
Google Scholar
[4]
R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, Mechanism in Nb doped titania oxygen gas sensor Sens. Actuat. B: Chem. 46 (1998) 194-201.
DOI: 10.1016/s0925-4005(98)00111-7
Google Scholar
[5]
A. Hagfeldt, M. Grätzel, Light induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.
DOI: 10.1021/cr00033a003
Google Scholar
[6]
S. Li, Y.G. Li, H.Z. Wang, W.G. Fan, Q.H. Zhang, Peptization–hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem. 27 (2009) 4078-4084.
DOI: 10.1002/ejic.200900371
Google Scholar
[7]
M. Addamo, V. Augugliaro, V. Loddo, G. Marci, R. Molinari, L. Palmisano, M. Schiavello, Preparation, characterization and photoactivity of polycrystalline nanostructured TiO2 catalysts, J. Phys. Chem. B 108 (2004) 3303-3310.
DOI: 10.1002/chin.200421014
Google Scholar
[8]
C. Hu, Y. Lan, X. Hu, A. Wang, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J. Phys. Chem. B 110 (2006) 4066-4072.
DOI: 10.1021/jp0564400
Google Scholar
[9]
Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, S. Illia, C. Sanchez, Optimised photocatalytic activity of grid-like mesoporous TiO2 films: effect of crystallinity, pore size distribution, and pore accessibility, J. Mater. Chem. 16 (2006) 77-82.
DOI: 10.1039/b512824m
Google Scholar
[10]
D.J. Reidy, J.D. Holmes, M.A. Morris, The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2, J. Eur. Ceram. Soc. 26 (2006) 1527-1534.
DOI: 10.1016/j.jeurceramsoc.2005.03.246
Google Scholar
[11]
N. Serpone, D. Lawless, R. Khairutdinov, Size Effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor, J. Phys. Chem. 99 (1995) 16646-16654.
DOI: 10.1021/j100045a026
Google Scholar
[12]
L.Y. Wang, Y.P. Sun, B.S. Xu, Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti-Si oxide structures, J. Mater. Sci. 43 (2008) 1979-(1986).
DOI: 10.1007/s10853-007-2431-y
Google Scholar
[13]
Y. Zhao, C. Li, X. Liu, F. Gu, H. L. Du, L. Shi, Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen–oxygen diffusion flame, Appl. Catal. B: Environ. 79 (2008) 208-215.
DOI: 10.1016/j.apcatb.2007.09.044
Google Scholar
[14]
H.B. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata S. Yanagida, Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, J. Mater. Chem. 11 (2001) 1694-1703.
DOI: 10.1039/b008974p
Google Scholar
[15]
T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, Nanostructured crystalline TiO2 through growth control and stabilization of intermediate structural building units, J. Phys. Chem. B, 101 (1997) 8052-8053.
DOI: 10.1021/jp9705131
Google Scholar
[16]
Z. Zhang, C. -C. Wang, R. Zakaria, J.Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, J. Phys. Chem. B 102 (1998) 10871–10878.
DOI: 10.1021/jp982948+
Google Scholar
[17]
K. Yanagisawa, J. Ovenstone, Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature, J. Phys. Chem. B 103 (1999) 7781-7787.
DOI: 10.1021/jp990521c
Google Scholar
[18]
Q.H. Zhang, L. Gao, J.K. Guo, Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO2 powder, J. Eur. Ceram. Soc. 20 (2000) 2153-2158.
DOI: 10.1016/s0955-2219(00)00085-6
Google Scholar
[19]
S. -J. Kim, S. -D. Park, Y.H. Jeong, S. Park, Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution, J. Am. Ceram. Soc. 82 (1999) 927-932.
DOI: 10.1111/j.1151-2916.1999.tb01855.x
Google Scholar
[20]
B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Nonaqueous production of nanostructured anatase with high-energy facets, J. Am. Chem. Soc. 130 (2008) 17563-17567.
DOI: 10.1021/ja8069715
Google Scholar
[21]
Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Trititanate nanotubes made via a single alkali treatment, Adv. Mater. 14 (2002) 1208-1211.
DOI: 10.1002/1521-4095(20020903)14:17<1208::aid-adma1208>3.0.co;2-0
Google Scholar
[22]
A.S. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J.P. Jolivet, Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, J. Mater. Chem. 13 (2003).
DOI: 10.1039/b211271j
Google Scholar
[23]
Q.H. Zhang, L. Gao, Ta3N5 Nanoparticles with enhanced photocatalytic efficiency under visible light irradiation, Langmuir 20 (2004) 9821-9827.
DOI: 10.1021/la048807i
Google Scholar
[24]
Q.H. Zhang, W.G. Fan, L. Gao, Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst, Appl. Catal. B: Environ. 76 (2007) 168-173.
DOI: 10.1016/j.apcatb.2007.05.024
Google Scholar
[25]
J.G. Yu, G.H. Wang, B. Cheng, M.H. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal., B 69 (2007) 171-180.
DOI: 10.1016/j.apcatb.2006.06.022
Google Scholar
[26]
M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal titanium dioxide, Chem. Mater. 14 (2002) 1974-(1980).
DOI: 10.1021/cm0102739
Google Scholar
[27]
S.W. Yang, L. Gao, Preparation of titanium dioxide nanocrytallite with high photocatalytic activities, J. Am. Ceram. Soc. 88 (2005) 968-970.
Google Scholar
[28]
C. Sanchez, J. Livage, M. Henry, F. Babonneau, Chemical modification of alkoxide precursors, J. Non-Cryst. Solid 100 (1988) 65-76.
DOI: 10.1016/0022-3093(88)90007-5
Google Scholar
[29]
J.G. Li, T. Shigaki, X.D. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties, J. Phys. Chem. C 111 (2007) 4969-4976.
DOI: 10.1021/jp0673258
Google Scholar