Upper Spectral Bound of Biharmonic Operator Eigenvalue Problem by Bicubic Hermite Element

Article Preview

Abstract:

This paper uses the bicubic Hermite element to compute the first four eigenvalues of the vibration problem of clamped plate by Matlab program and gives upper bound of the exact eigenvalues. Combing Matlab experiments on Morley element for lower spectral bound we can provide a range of the exact eigenvalues of biharmonic operator more accurately.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 466-467)

Pages:

430-434

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.Babuska, J.Osborn: Handbook of Numerical Analysis (Elsevier Science Publishers B.V, North-Holland 1991).

Google Scholar

[2] H. Bi, Y.D. Yang: Procedia engineering (2012), in press .

Google Scholar

[3] P. G. Ciarlet: Handbook of Numerical Analysis (Elsevier Science Publishers B.V., North-Holand 1991).

Google Scholar

[4] T. Lu, C.B. Liem and T.M. Shih: Comp.Math. Vol.6(1988), pp.267-271.

Google Scholar

[5] W. C. Qian: The variational method and finite element ( Science Publisher, Beijin 1980).

Google Scholar

[6] Rannacher R: Numer.Math. Vol.33 (1979), pp.23-42.

Google Scholar

[7] G. Strang, G.J. Fix: An Analysis of the Finite Element Method. Englewood Cliffs, NJ:Prentice-Hall, 1973.

Google Scholar

[8] Y. D. Yang : Comput. Math. Vol.18 (2000), pp.413-418.

Google Scholar

[9] Y. D. Yang: Numerical Mathematics A Journal of Chinese Universities Vol. 30( 2008), pp.201-212.

Google Scholar

[10] Y.D. Yang, Q. Lin, H. Bi and Q. Li: Adv. Comput. Math

DOI: 10.1007/s10444-011-9185-4

Google Scholar

[11] Y.D. Yang, Z.M. Zhang and F.B. Lin: Sci. China Math. Vol.53(2010), pp.137-150.

Google Scholar