The Simulation of a Novel Laser Indirect Shock Forming with SPH

Article Preview

Abstract:

In order to study a novel laser indirect shock forming mechanism which applies laser-driven flyer to load the workpiece, this paper uses the SPH method to study the behavior of laser indirect shock forming and simulate the process of the workpiece forming. The SPH method solves the problem about the mesh tangling encountered in extreme deformation and this paper presents some ideal results and histories. Through comparing the experiment result with the simulating result, it is easy to find that the analysis with the SPH method can predict the final shape of workpiece properly. To some extent, this paper could provide some helpful messages for the study on the novel laser indirect shock forming.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 468-471)

Pages:

1058-1065

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Verker, N. Eliaz, I. Gouzman, S. Eliezer, et al: Acta Materialia 52 (2004) 5539.

DOI: 10.1016/j.actamat.2004.08.013

Google Scholar

[2] Z.Z. Gong, F. Dai and Y. Cao, et al: Nuclear instruments and methods in physics research section B 267 (2009) 3252.

Google Scholar

[3] S. Katz, E. Grossman, I. Gouzman, et al: Int. J. Impact Eng. 35 (2008) 1606.

Google Scholar

[4] S. Katz, E. Grossman, I. Gouzman, et al: Journal of spacecraft and rockets 46 (2009) 230.

Google Scholar

[5] H.X. Liu, Z.B. Shen, X. Wang, et al: Journal of applied physics 106 (2009) 063107.

Google Scholar

[6] R.J. Lawrence and W.M. Trott: Int. J. Impact Eng. 14 (1993) 439.

Google Scholar

[7] D.B. Stahl, R.J. Gehr, R.W. Harper, T.D. Rupp, S.A. Sheffield and D.L. Robbins: Proceedings of the Shock Compression of Condensed Matter(1999)unpublished 1087.

Google Scholar

[8] M. W. Greenaway, W. G. Proud, J. E. Field and S. G. Goveas: Int. J. Impact Eng. 29(2003) 317.

Google Scholar

[9] S. Fu, Y. Gu, X. Huang, et al: Phys. Plasmas 9 (2002) 3201.

Google Scholar

[10] R.A. Gingold and J. Monaghan: Mon. Not. R. Astron.Soc 181 (1977) 375.

Google Scholar

[11] L.B. Lucy: Astron. J. 82 (1977) 1013.

Google Scholar

[12] M.B. Liu, G.R. Liu, K.Y. Lam and Z. Zong: Shock Waves 12(2003) 509.

Google Scholar

[13] G.R. Johnson, R.A. Stryk and S.R. Neissel: Comput. Methods Appl. Mech. Eng 139 (1996) 47.

Google Scholar

[14] M. Ellero, and R.I. Tanner: J. Non-Newtonian Fluid Mech 132 (2005) 61.

Google Scholar

[15] J.O. Hallquist: LS-DYNA Theoretical Manual (Livermore Software Technology Corporation, USA, 1998)

Google Scholar

[16] G. R. Johnson and W. H. Cook: Proceedings of the Seventh International Symposium on Ballistics (1983) 541.

Google Scholar

[17] C. Poizat, L. Campagne and L. Daridon: Int J of Forming Processes 8 (1) (2005) 29–47.

Google Scholar

[18] P. Peyre and R. Fabbro: Opt. Quantum Electron. 27 (1995) 1213.

Google Scholar

[19] W. Zhang and Y. L.Yao: ASMEJ.Manuf.Sci.Eng.124 (2002) 369.

Google Scholar

[20] R. Fabbro, J.Fournier, P.Ballard, D.Devaux and J.Virmont: J. Appl. Phys. 68 (1990) 755.

Google Scholar